MATH 4335-101 FINAL EXAM

Name:

Testing conditions: Materials allowed: calculator, pen, pencil, eraser, etc. (Actually, for the selected problems, a calculator is not needed.) Prohibited materials: notes, books, phones, etc.

Date: Dec. 8, 2014.

Exercise	Point Possible	Score
1	33	
2	33	
3	34	
Total	100	

1. [33 points] Let $y_1 = 20$, and $y_{n+1} = (y_n/3) + 5$. Prove that $(y_n)_{n \in \mathbb{N}}$ is decreasing and bounded below.

2. [33 points] Let f, g, and h be partial functions from \mathbb{R} to \mathbb{R} . For each of the following statements, if it's false, provide a counterexample.

- (1) If f is invertible and bounded, then f^{-1} is bounded. (2) If f is invertible and decreasing, then f^{-1} is decreasing.
- (3) if f is increasing and g and h are decreasing, then $f \circ (g \circ h)$ is increasing.
- (4) If f is bounded, then $f \circ g$ is bounded.
- (5) If f is bounded, then $g \circ f$ is bounded.
- (6) If $\operatorname{dom}(f) = \operatorname{dom}(g) = \mathbb{R}$, then $\operatorname{dom}(f \circ g) = \mathbb{R}$.

3. [34 points] Prove that if $f: (0,1) \to \mathbb{R}$ is uniformly continuous, then $\lim_{x \to 0^+} f(x)$ exists.