MATH 4335-101 FINAL EXAM

Name:

Testing conditions:
Materials allowed: calculator, pen, pencil, eraser, etc.
(Actually, for the selected problems, a calculator is not needed.)
Prohibited materials: notes, books, phones, etc.

Exercise	Point Possible	Score
1	33	
2	33	
3	34	
Total	100	

1. [33 points] Let $y_{1}=20$, and $y_{n+1}=\left(y_{n} / 3\right)+5$. Prove that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is decreasing and bounded below.
2. [33 points] Let f, g, and h be partial functions from \mathbb{R} to \mathbb{R}. For each of the following statements, if it's false, provide a counterexample.
(1) If f is invertible and bounded, then f^{-1} is bounded.
(2) If f is invertible and decreasing, then f^{-1} is decreasing.
(3) if f is increasing and g and h are decreasing, then $f \circ(g \circ h)$ is increasing.
(4) If f is bounded, then $f \circ g$ is bounded.
(5) If f is bounded, then $g \circ f$ is bounded.
(6) If $\operatorname{dom}(f)=\operatorname{dom}(g)=\mathbb{R}$, then $\operatorname{dom}(f \circ g)=\mathbb{R}$.
3. [34 points] Prove that if $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous, then $\lim _{x \rightarrow 0^{+}} f(x)$ exists.
