MATH 4335 FINAL

Name:

Date: Dec. 15, 2015.

1.

- (a) Let {a_n} be a sequence, and let {a_{ni}} be any subsequence. Prove that if ∑_{n=0}[∞] a_n is absolutely convergent, then ∑_{i=0}[∞] a_{ni} is absolutely convergent
 (b) Show by counterexample that the above is false if the word "absolutely" is dropped every-
- where.

2.

- (a) Give an example of a bounded function $f \colon \mathbb{R} \to \mathbb{R}$.
- (b) Give an example of a function $g \colon \mathbb{R} \to \mathbb{R}$ that is locally bounded but not bounded.
- (c) Give an example of a function $h \colon \mathbb{R} \to \mathbb{R}$ that is not locally bounded.

3. Suppose that f'(x) = 3g(x) and g'(x) = 4f(x) for all $x \in \mathbb{R}$. Prove that between any two zeroes of f is a zero of g.

4. Suppose that a < b, f is continuous on [a, b], $f \ge 0$ on [a, b], and f(c) > 0 for at least one point on [a, b].

- (a) Show that $\int_a^b f(x) dx > 0$. (b) Give an example of a function g such that g is integrable on $[0, 1], g \ge 0$ on [0, 1], g(0) > 0, and $\int_0^1 g(x) dx = 0$.

5. Prove that if $n \in \{2, 3, 4, \ldots\}$ and 0 < x, then

$$\left(1+\frac{x}{n}\right)^n < \sum_{k=0}^n \frac{x^k}{k!}.$$