MATH 4335 TEST 2

Name:

1. Prove that if a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $\left|a_{n}-a_{n+1}\right| \leq n^{-3}$ for all n, then $\left\{a_{n}\right\}$ converges.
2.

(a) Explain what is wrong with the "proof" below.
(b) Give a counterexample to the claim.

Claim. If $\sum_{i=0}^{\infty} a_{i}$ converges and $b_{0}, b_{1}, b_{2}, \ldots$ is a subsequence of $\left\{a_{i}\right\}$, then $\sum_{i=0}^{\infty} b_{i}$ converges.
Proof. Given $\varepsilon>0$, it is enough to show that $b_{i}+b_{i+1}+b_{i+2}+\cdots+b_{j}<\varepsilon$ for $j \geq i \gg 1$. By definition of subsequence, we have $b_{i}=a_{k_{i}}$ for all i, for some $k_{0}<k_{1}<k_{2}<k_{3}<\cdots$. Since $\sum a_{i}$ converges, there is M such that $a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n}<\varepsilon$ for all $n \geq m \geq M$. Choose N such that $k_{N} \geq M$. Then $j \geq i \geq N$ implies $k_{j} \geq k_{i} \geq M$, which implies

$$
b_{i}+b_{i+1}+b_{i+2}+\cdots+b_{j} \leq a_{k_{i}}+a_{k_{i}+1}+a_{k_{i}+2}+\cdots+a_{k_{j}}<\varepsilon .
$$

3.

(a) Give an example of a sequence with exactly one cluster point.
(b) Give an example of a sequence with exactly three cluster points.
(c) Give an example of a sequence with infinitely many cluster points.
(d) Give an example of a sequence with no cluster points.

