MATH 4335 TEST 2

Name:

Date: Oct. 29, 2015.

1. Prove that if a sequence a_1, a_2, a_3, \ldots satisfies $|a_n - a_{n+1}| \le n^{-3}$ for all n, then $\{a_n\}$ converges.

2.

- (a) Explain what is wrong with the "proof" below.
- (b) Give a counterexample to the claim.

Claim. If $\sum_{i=0}^{\infty} a_i$ converges and b_0, b_1, b_2, \ldots is a subsequence of $\{a_i\}$, then $\sum_{i=0}^{\infty} b_i$ converges.

Proof. Given $\varepsilon > 0$, it is enough to show that $b_i + b_{i+1} + b_{i+2} + \cdots + b_j < \varepsilon$ for $j \ge i \gg 1$. By definition of subsequence, we have $b_i = a_{k_i}$ for all i, for some $k_0 < k_1 < k_2 < k_3 < \cdots$. Since $\sum a_i$ converges, there is M such that $a_m + a_{m+1} + a_{m+2} + \cdots + a_n < \varepsilon$ for all $n \ge m \ge M$. Choose N such that $k_N \ge M$. Then $j \ge i \ge N$ implies $k_j \ge k_i \ge M$, which implies

$$b_i + b_{i+1} + b_{i+2} + \dots + b_j \le a_{k_i} + a_{k_i+1} + a_{k_i+2} + \dots + a_{k_j} < \varepsilon.$$

3.

- (a) Give an example of a sequence with exactly one cluster point.
- (b) Give an example of a sequence with exactly three cluster points.
- (c) Give an example of a sequence with infinitely many cluster points.
- (d) Give an example of a sequence with no cluster points.