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Lemma 1 (Alexander Subbase Lemma). Let S be a subbase of space X such
that every subcover of S has a finite subcover. Then X is compact.

Proof using Zorn’s Lemma. Seeking a contradiction, suppose S is as above but
X has an open cover without a finite subcover. Let O denote the set of all open
covers of X that lack finite subcovers. Then O is nonempty; hence, the union ∅
of the empty chain ∅ is a subset of some U ∈ O. By the following claim, each
union of a nonempty chain C ⊂ O is also a subset of some U ∈ O.

Claim. If C ⊂ O is a nonempty chain, then
⋃

C ∈ O.

Proof. Let V ∈ C and W =
⋃
C. Then W is a set of open subsets of X because

every C ∈ C is. Moreover, W covers X because V does and W contains V. If
{W1, . . . ,Wn} is a finite subcover of W, then Wi ∈ Ci ∈ C for some Ci, for
each i. But in this case, since C is a chain, C1, . . . , Cn ⊂ Cj for some j and,
therefore, {W1, . . . ,Wn} is a finite subcover of Cj , which is impossible because
Cj ∈ C ⊂ O. Therefore, W has no finite subcover. Thus, W ∈ O.

By Zorn’s Lemma, O has a maximal element M. Let A = M∩ S. Since
A ⊂M ∈ O, no finite subset of A covers X. But all subcovers of S have finite
subcovers; hence, A does not cover X; choose p ∈ X−

⋃
A. SinceM does cover

X, we may choose M such that p ∈ M ∈ M. Since S is a subbase for X, we
may choose S1, . . . , Sn ∈ S such that p ∈

⋂
i≤n Si ⊂M .

For each Si, we have Si 6∈ M because Si ∈ S − A because p ∈ Si −
⋃
A.

Therefore, Bi = M∪ {Si} 6∈ O by maximality of M. But since Bi ⊃ M and
every S ∈ S is open in X, the set Bi is still an open cover of X despite Bi 6∈ O.
Therefore, Bi has a finite subcover Fi. Let Gi = (Fi − {Si}) ∪ {M}, which is a
finite subset of M whose union contains Yi = (X − Si) ∪M .

Let G =
⋃

i≤n Gi. Then G is a finite subset of M whose union contains⋃
i≤n Yi, which, as demonstrated below, is all of X because

⋂
i≤n Si ⊂M .

⋃
i≤n

((X − Si) ∪M) =

X −
⋂
i≤n

Si

 ∪M ⊃ (X −M) ∪M = X

Thus, M has a finite subcover despite M∈ O. Contradiction!
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Lemma 2 (Zorn’s Lemma). Suppose that D is set of sets such that, for each
chain C ⊂ D, there exists B ∈ D such that

⋃
C ⊂ B. Then D has a maximal

element.

Proof using the Well-Ordering Principle. Let ≤ be a well-ordering of D. Define
f : D → {0, 1} recursively by f(B) = 1 if A ⊂ B for all A < B satisfying
f(A) = 1, and f(B) = 0 otherwise. (If f were not well-defined, there would
be a least B at which f(B) was not well-defined. But then f(A) would be
well-defined for all A < B, implying that our above recursive definition of f(B)
actually does define f(B). Therefore, f must be well-defined.)

For each pair A,B ∈ D, we have A ≤ B or A ≥ B. And if A < B and
f(A) = f(B) = 1, then A ⊂ B. Therefore, f−1({1}) is a chain. Therefore,
we may choose M ∈ D such that

⋃(
f−1({1})

)
⊂ M . Let us show that M is

maximal in D. Given M ⊂ C ∈ D, it is enough to show show that C ⊂ M .
Since

⋃(
f−1({1})

)
⊂M ⊂ C, we have f(C) = 1 by definition of f . Therefore,

C ⊂
⋃(

f−1({1})
)
⊂M .

Remark. In the context of Z, Zermelo’s axioms of set theory excluding Choice,
the Axiom of the Choice, the Well-Ordering Principle, and Zorn’s Lemma are
all provably equivalent, but not intuitively equivalent. The old joke is that
the Axiom of Choice is obviously true, the Well-Ordering Principle is obviously
false, and as for Zorn’s Lemma, who can say?
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