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Lemma 1 (Alexander Subbase Lemma). Let S be a subbase of space X such
that every subcover of S has a finite subcover. Then X is compact.

Proof using Zorn’s Lemma. Seeking a contradiction, suppose S is as above but
X has an open cover without a finite subcover. Let O denote the set of all open
covers of X that lack finite subcovers. Then O is nonempty; hence, the union @
of the empty chain @ is a subset of some U € Q. By the following claim, each
union of a nonempty chain C C O is also a subset of some U € Q.

Claim. If C C O is a nonempty chain, then | JC € Q.

Proof. Let V € C and W = |JC. Then W is a set of open subsets of X because
every C € C is. Moreover, W covers X because V does and W contains V. If
{Wy,...,W,} is a finite subcover of W, then W; € C; € C for some C;, for
each 7. But in this case, since C is a chain, Cy,...,C, C C; for some j and,
therefore, {W1,..., W, } is a finite subcover of C;, which is impossible because
C; € C C O. Therefore, W has no finite subcover. Thus, W € Q. O

By Zorn’s Lemma, O has a maximal element M. Let A = M NS. Since
A C M € Q, no finite subset of A covers X. But all subcovers of S have finite
subcovers; hence, A does not cover X; choose p € X —|J.A. Since M does cover
X, we may choose M such that p € M € M. Since S is a subbase for X, we
may choose Si,...,S, € S such that p € (,,, S; C M.

For each S;, we have S; & M because S; € S — A because p € S; — J A.
Therefore, B; = M U {S;} ¢ O by maximality of M. But since B; D M and
every S € § is open in X, the set B; is still an open cover of X despite B; ¢ O.
Therefore, B; has a finite subcover F;. Let G; = (F; — {S;}) U{M}, which is a
finite subset of M whose union contains Y; = (X — S;) U M.

Let G = J;<,,Gi- Then G is a finite subset of M whose union contains
U, <, Yi, which, as demonstrated below, is all of X because (,.,, Si C M.

Ux-syun) =[x -S| uM> X -MuM=X

i<n i<n

Thus, M has a finite subcover despite M € Q. Contradiction! O



Lemma 2 (Zorn’s Lemma). Suppose that D is set of sets such that, for each
chain C C D, there exists B € D such that | JC C B. Then D has a mazimal
element.

Proof using the Well-Ordering Principle. Let < be a well-ordering of D. Define
f: D — {0,1} recursively by f(B) = 1if A C B for all A < B satisfying
f(A) =1, and f(B) = 0 otherwise. (If f were not well-defined, there would
be a least B at which f(B) was not well-defined. But then f(A) would be
well-defined for all A < B, implying that our above recursive definition of f(B)
actually does define f(B). Therefore, f must be well-defined.)

For each pair A,B € D, we have A < Bor A > B. And if A < B and
f(A) = f(B) = 1, then A C B. Therefore, f~1({1}) is a chain. Therefore,
we may choose M € D such that {J (f~*({1})) C M. Let us show that M is
maximal in D. Given M C C € D, it is enough to show show that C' C M.
Since |J (f*({1})) € M C C, we have f(C) =1 by definition of f. Therefore,

ccU(f 1)) c M. o

Remark. In the context of Z, Zermelo’s axioms of set theory excluding Choice,
the Axiom of the Choice, the Well-Ordering Principle, and Zorn’s Lemma are
all provably equivalent, but not intuitively equivalent. The old joke is that
the Axiom of Choice is obviously true, the Well-Ordering Principle is obviously
false, and as for Zorn’s Lemma, who can say?



