Zorn's Lemma and the Alexander Subbase Lemma

David Milovich

April 24, 2018

Lemma 1 (Alexander Subbase Lemma). Let S be a subbase of space X such that every subcover of S has a finite subcover. Then X is compact.

Proof using Zorn's Lemma. Seeking a contradiction, suppose S is as above but X has an open cover without a finite subcover. Let \mathbb{O} denote the set of all open covers of X that lack finite subcovers. Then \mathbb{O} is nonempty; hence, the union \emptyset of the empty chain \emptyset is a subset of some $\mathcal{U} \in \mathbb{O}$. By the following claim, each union of a nonempty chain $\mathbb{C} \subset \mathbb{O}$ is also a subset of some $\mathcal{U} \in \mathbb{O}$.

Claim. If $\mathbb{C} \subset \mathbb{O}$ is a nonempty chain, then $\bigcup \mathbb{C} \in \mathbb{O}$.

Proof. Let $\mathcal{V} \in \mathbb{C}$ and $\mathcal{W} = \bigcup \mathbb{C}$. Then \mathcal{W} is a set of open subsets of X because every $\mathcal{C} \in \mathbb{C}$ is. Moreover, \mathcal{W} covers X because \mathcal{V} does and \mathcal{W} contains \mathcal{V} . If $\{W_1, \ldots, W_n\}$ is a finite subcover of \mathcal{W} , then $W_i \in \mathcal{C}_i \in \mathbb{C}$ for some \mathcal{C}_i , for each i. But in this case, since \mathbb{C} is a chain, $\mathcal{C}_1, \ldots, \mathcal{C}_n \subset \mathcal{C}_j$ for some j and, therefore, $\{W_1, \ldots, W_n\}$ is a finite subcover of \mathcal{C}_j , which is impossible because $\mathcal{C}_j \in \mathbb{C} \subset \mathbb{O}$. Therefore, \mathcal{W} has no finite subcover. Thus, $\mathcal{W} \in \mathbb{O}$.

By Zorn's Lemma, \mathbb{O} has a maximal element \mathcal{M} . Let $\mathcal{A} = \mathcal{M} \cap \mathcal{S}$. Since $\mathcal{A} \subset \mathcal{M} \in \mathbb{O}$, no finite subset of \mathcal{A} covers X. But all subcovers of \mathcal{S} have finite subcovers; hence, \mathcal{A} does not cover X; choose $p \in X - \bigcup \mathcal{A}$. Since \mathcal{M} does cover X, we may choose M such that $p \in M \in \mathcal{M}$. Since \mathcal{S} is a subbase for X, we may choose $S_1, \ldots, S_n \in \mathcal{S}$ such that $p \in \bigcap_{i \leq n} S_i \subset M$.

For each S_i , we have $S_i \notin \mathcal{M}$ because $\overline{S_i} \in S - \mathcal{A}$ because $p \in S_i - \bigcup \mathcal{A}$. Therefore, $\mathcal{B}_i = \mathcal{M} \cup \{S_i\} \notin \mathbb{O}$ by maximality of \mathcal{M} . But since $\mathcal{B}_i \supset \mathcal{M}$ and every $S \in S$ is open in X, the set \mathcal{B}_i is still an open cover of X despite $\mathcal{B}_i \notin \mathbb{O}$. Therefore, \mathcal{B}_i has a finite subcover \mathcal{F}_i . Let $\mathcal{G}_i = (\mathcal{F}_i - \{S_i\}) \cup \{M\}$, which is a finite subset of \mathcal{M} whose union contains $Y_i = (X - S_i) \cup M$.

Let $\mathcal{G} = \bigcup_{i \leq n} \mathcal{G}_i$. Then \mathcal{G} is a finite subset of \mathcal{M} whose union contains $\bigcup_{i < n} Y_i$, which, as demonstrated below, is all of X because $\bigcap_{i < n} S_i \subset M$.

$$\bigcup_{i \le n} ((X - S_i) \cup M) = \left(X - \bigcap_{i \le n} S_i\right) \cup M \supset (X - M) \cup M = X$$

Thus, \mathcal{M} has a finite subcover despite $\mathcal{M} \in \mathbb{O}$. Contradiction!

Lemma 2 (Zorn's Lemma). Suppose that \mathcal{D} is set of sets such that, for each chain $\mathcal{C} \subset \mathcal{D}$, there exists $B \in \mathcal{D}$ such that $\bigcup \mathcal{C} \subset B$. Then \mathcal{D} has a maximal element.

Proof using the Well-Ordering Principle. Let \leq be a well-ordering of \mathcal{D} . Define $f: \mathcal{D} \to \{0, 1\}$ recursively by f(B) = 1 if $A \subset B$ for all A < B satisfying f(A) = 1, and f(B) = 0 otherwise. (If f were not well-defined, there would be a least B at which f(B) was not well-defined. But then f(A) would be well-defined for all A < B, implying that our above recursive definition of f(B) actually does define f(B). Therefore, f must be well-defined.)

For each pair $A, B \in \mathcal{D}$, we have $A \leq B$ or $A \geq B$. And if A < B and f(A) = f(B) = 1, then $A \subset B$. Therefore, $f^{-1}(\{1\})$ is a chain. Therefore, we may choose $M \in \mathcal{D}$ such that $\bigcup (f^{-1}(\{1\})) \subset M$. Let us show that M is maximal in \mathcal{D} . Given $M \subset C \in \mathcal{D}$, it is enough to show show that $C \subset M$. Since $\bigcup (f^{-1}(\{1\})) \subset M \subset C$, we have f(C) = 1 by definition of f. Therefore, $C \subset \bigcup (f^{-1}(\{1\})) \subset M$.

Remark. In the context of Z, Zermelo's axioms of set theory excluding Choice, the Axiom of the Choice, the Well-Ordering Principle, and Zorn's Lemma are all provably equivalent, but not intuitively equivalent. The old joke is that the Axiom of Choice is obviously true, the Well-Ordering Principle is obviously false, and as for Zorn's Lemma, who can say?