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Summary. We take some standard concepts and theorems about metric
spaces that use “e,” prove the concepts equivalent to a sequential concepts that
replace “€” and any explicit inequalities with subsequences and limits, and prove
the theorems using these subsequences.

e Continuity, uniform continuity, Cauchy sequences, totally bounded metric
spaces, and compact metric spaces are characterized in terms of subse-
quences.

e Subsequences are used to prove that uniformly continuous images preserve
the Cauchy property and total boundedness.

e Subsequences are used to prove that the compact metric spaces are exactly
the complete totally bounded metric spaces.

e Subsequences are used to prove the Uniform Continuity Theorem.

Definition 1. Given a topological space X, p € X, and a sequence ¢y, ca,c3, ... €
X, we write ¢,, — p if for every neighborhood U of p there exists N € N such
that cy, CN4+1,CN42,--- € U.

Definition 2. Given a map between f: X — Y between metric spaces,

e f is uniformly continuous if, for every € > 0 there exists § > 0 such that
dx(a,b) < § implies dy (f(a), (b)) < ¢;

o fis sequentially uniformly continuous if
dx(an,bn) — 0 implies dy (f(an), f(brn)) — 0.
Lemma 1. A map between f: X — Y between metric spaces is uniformly
continuous if and only if it is sequentially uniformly continuous.

Proof. First, we assume uniform continuity and prove sequential uniform con-
tinuity. Given dx (an,b,) — 0 and € > 0, it is enough to find a tail of distances
(dy (f(an), f(bn)))n>n all < e. Choose § > 0 such that, for all a,b € X,



dx(a,b) < ¢ implies dy (f(a), f(b)) < e. Since dx(an,b,) — 0, there is a tail
of distances (dx(@n,bn))n>n all < §. Therefore dy (f(ay), f(by)) < € for all
n>N.

Now we assume sequential uniform continuity and prove uniform continu-
ity. Given £ > 0, it is enough to find § > 0 such that dx(a,b) < ¢ implies
dy (f(a), f(b)) < e. Seeking a contradiction, suppose there is no such §. For
eachn € N, case 6 = % allows us to choose a,,, b, € X such that dx (an,b,) < %

but dy (f(an), f(br)) > €. Therefore, dx (an,b,) — 0 but dy (f(an), f(br)) # 0,
in contradiction with sequential uniform continuity. O

Definition 3. We say that sequence by, bs, b3, ... is a subsequence of sequence
ai,az,as, ... if there exist ny < ny < ng < --- such that a,, = by for all k € N.

Definition 4. Suppose aq,as, as, ... is a sequence in a metric space.

e Given ¢ > 0, we say aj,as,as, ... is e-stable if d(a,,,a,) < € for all m,n €
N.

o We say a1, as,as,...is Cauchy if, for every € > 0, there is an e-stable tail
AN, AN+15;AN+2 - - -+

e We say aj,as,as, ... is sequentially Cauchy if d(b,, c¢,,) — 0 for all pairs of

subsequences by, ba, bs, ... and cq,ca,c3, .. ..
Lemma 2. A sequence ay,as,as, ... is Cauchy if and only if it is sequentially
Cauchy.
Proof. First, assume ai,as9,as,... is Cauchy. Given subsequences by = a,,

and ¢x = an,, we will show that d(bg,cr) — 0. To do this, we assume £ > 0
and then find a tail d(bg, cx),d(brt1,cr+1), d(bk12,CK42), ... all less than e.
By assumption, there is an L such that ap,arpy1,ar42,... is e-stable. Choose
K large enough that mg,nx > L. Then d(bg,cr) < € for all k& > K. Thus,
a1, as, as, ... is sequentially Cauchy.

Now instead assume that ai,as, as, ... is sequentially Cauchy. We will show
it is Cauchy. Seeking a contradiction, suppose it is not, that € > 0 and no
tail ay,an41,anN42,... is e-stable. We will reach a contradiction by finding

subsequences p1, ps, p3, . . . and q1, ¢2, g3, . . . such that d(p, qx) > € for all k € N.
Let sy = t; = 1 and then, given n € N and given s1 < t] < 53 < tg < -++ <

5p < tn, choose t,y1 > S,41 > t, such that d(as,,,,as,,,) > €, which is
possible because the tail a;, 11, a¢, 12, at,+3,... is not e-stable. The resulting
subsequences p, = as, and g = a;, are as desired. O

Theorem 1. If f: X — Y is a uniformly continuous map between metric spaces
and a1, as,as, ... is Cauchy in X, then f(ay1), f(a2), f(a3),... is Cauchy in Y.

Proof. Given subsequences p1, pa, ps, ... and ¢1,¢2,qs, ... of f(a1), f(az2), f(as),. ..

say, pr = f(am,) and g = f(an,) where m; < mz <mgz < --- and ny < ng <
ng < ---, let by = am, and ¢ = an,. Then d(bg,cr) — 0 because ay,as,as, ...
is Cauchy. Since f is uniformly continuous, d(pg,qr) = d(f(br), f(ck)) — 0
too. ]



Definition 5.

e A metric space X is totally bounded if, for each € > 0, X has a finite open
covering by e-balls: X = J,.,, B(i,¢).

e A metric space X is sequentially totally bounded if every sequence has a
Cauchy subsequence.

Lemma 3. A metric space X is totally bounded if and only if it is sequentially
totally bounded.

Proof. First we assume sequential total boundedness and prove total bounded-
ness. Let ¢ > 0. Assuming that X is not covered by finitely many e-balls,
we will prove a contradiction. Define a sequence x1,xs2,z3,... by choosing
tn, € X — U, B(xi,¢€) for each n € N. Let ny < ng < n3 < --- be such
that yx = z,, is a Cauchy subsequence. The sequence yi,ys2,¥s,... has an
e-stable tail yx,yrx+1,YKx+2,-..; hence, yx+1 € B(yk,e), which contradicts
Tngr € X = Uicny,, B@ise).

Now we assume total boundedness and prove sequential total boundedness.
Suppose a,as,as,... € X. For each n € N, let F;, C X be finite and such
that X = Uxan B (x, %) Construct a chain Iy D Iy D I3 D --- of infinite
subsets of N as follows. Let I = N. Given infinite I,,_; C N infinite, choose,
for each i € I,_1, a point f(i) € F, such that a;) € B (f(i), ). Since I,y is
infinite and Fj, is finite, f must send infinitely many inputs to the same output.
Choose z,, € F,, and I,, = f~!'({x,}) such that I, is infinite. Then I, 1 D I,
as required.

Now choose n1 < ny < ng < --- as follows. Given m € N and n; for all
1 < m, choose n,, from the infinite set I,,, such that n,, > n; for all i <m. We
claim that the resulting subsequence b,, = a,, is Cauchy. To prove this, we
will find, given € > 0, an e-stable tail bys, bas41,bp42, - ... Choose M such that
ﬁ < 5. Suppose M < i,j. Then ng,n; € In. Hence, d(bs,b;) < d(bs, xpr) +
d(.IM, bj) < e. Thus, by, bM+1, bM+2, ... is e-stable. O

Theorem 2. If f: X — Y is uniformly continuous and X is totally bounded,
then f(X) is totally bounded.

Proof. Assume f: X — Y is uniformly continuous and X is totally bounded.
Let y1,92,9s3 ... € f(X) and choose x,, such that y, = f(z,), for each n € N.

By assumption, there are n; < ny < ng < --- such that wy, ws, ws, ... is Cauchy
where w,,, = x,,,, . By Theorem 1, setting z,, = f(w,,) makes z1,22,23,... a
Cauchy subsequence of y1,y2,ys . ... Thus, f(X) is totally bounded. O

Lemma 4. A convergent sequence in a metric space is Cauchy.

Proof. Given a,, — = in a metric space and subsequences by and c, we have
br, — x and ¢ — x, which together imply d(bg, cx) < d(bg, x)+d(z,cx) — 0. O

Lemma 5. If ai,as,as,... is a Cauchy sequence with convergent subsequence
by = an, = x, then a, — .



Proof. Since ay,as,as,... is sequentially Cauchy, d(ag,br) — 0. Therefore,
ar — . O

Definition 6.
e A metric space X is complete if every Cauchy sequence converges.
e A topological space is compact if every open cover has a finite subcover.

e A metric space is sequentially compact if every sequence has a convergent
subsequence.

Lemma 6. A metric space X is sequentially compact if and only if it is sequen-
tially totally bounded and complete.

Proof. If X is sequentially totally bounded and complete, then every sequence
has a Cauchy subsequence which converges, making X sequentially compact.
To prove the converse, suppose that X is sequentially compact. Then every
sequence has a convergent subsequence which is Cauchy, making X totally

bounded. To see that X is also complete, suppose that a;,as,as, ... is Cauchy.
By assumption, there is a convergent subsequence b,,, = a,,, — . By Lemma 5,
a1,0as,as, ... CONverges. O

Lemma 7. A metric space X is sequentially compact if and only if it is compact.

Proof. First, suppose X is compact. Then X is totally bounded because if ¢ > 0
then {B(z,e) | x € X} is an open cover with a finite subcover. Therefore,
to show that X is sequentially compact, it suffices to show that X is complete.
So, given ai,as,as,... Cauchy, we will show that a, — p for some p € X.
Let C = (\yen On where Cn = {a, | n > N}. Since each Cy is closed and
nonempty and C; D Cy D C3 D ---, compactness of X implies that C is
nonempty. Choose p € C'. Given € > 0, choose N such that ay,ant1,an+2,---
is /2-stable. Since p € C' C Cy, the neighborhood B(p,e/2) of p intersects
{an, | n> N}. So, choose M > N such that d(p,an) < €/2. Then d(a,,p) <
d(an,apr) + d(apr,p) < € for all n > N. Thus, a,, — p.

Now instead suppose that X is sequentially compact. Given an open cover
U of X without a finite subcover, we will prove a contradiction. For each n € N,
let F,, C X be finite and such that X = Uxan B (:v, %) For each n, if B (x, %)
were covered by a finite G, C U for each = € F,, then Uzan G, would be a finite
subcover of U. So, choose x,, € F,, such that B (acn, %) is not covered by any
finite G C U. By sequential compactness, there are z and n; < no < ng < ---
such that y, — z where y, = z,,. Then B(z,§) C U € U for some 6,U.
Choosing k large enough that n—lk < g and d(yg, z) < g, we have

1
B (yk,> C B(z,6) CU €U,
n

which contradicts B (xnk, n—i) not being covered by any finite G C U. O



Theorem 3. A metric space X is compact if and only if it is totally bounded
and complete.

Proof. Combine Lemmas 6 and 7. O
Lemma 8 (Subsubsequence Lemma). Given a topological space X, p € X, and
a sequence ci,Ca,Cs3,... € X, suppose that, for every subsequence by, = cp,,
where n1 < ng < ng < ---, there exists a subsubsequence ar = by, where

mp < mo <mgz < --- such that ar, — p. Then ¢, — p.

Proof. Seeking a contradiction, suppose that ¢,, 4 p. Then there is a neighbor-
hood U of p such that U does not contain any tail ¢y, cnt1,CN+2, . ... Choose
ny < ng < ng < --- by the following method of selecting n,, for each m € N.
Given m € N and n; for i < m, choose N > n; for all i < m, observe that
{eN,eNt1,CN 2, ...} € U, and then choose n,,, > N such that ¢, & U.

By construction, the subsequence by, bs, b3, ... where b,, = ¢,,, avoids U.
By assumption, by, ba, b3, . .. has a subsequence aj, = by, — p. Hence, some tail
K, OK+1,0K+2,--.18InU. But ax = b, € U by construction. Contradiction!

O

Definition 7. Given a function f: X — Y between topological spaces,

e fis continuous if p € A implies f(p) € f(A);
o fis sequentially continuous if a,, — p implies f(a,) — f(p).

Lemma 9. Given a function f: X — Y between metric spaces, f is continuous
if and only if it is sequentially continuous.

Proof. Suppose f is sequentially continuous. Given p € A C X, choose a,, €
AN B (p,+) for each n € N. Then a, — p. Hence, f(a,) — f(p). Hence,
1) € {F(an) | n €N C F(A).

Now suppose f is continuous. Given a,, — p € X, we will show that f(a,) —
f(p). Let b, = a,,, wheren; < ng < ng < ---. By the Subsubsequence Lemma,
it is enough to find m; < mg < mg < --- such that f(cx) — f(p) where
¢k = bp,. Choose mj, mg, ms,... as follows. Given k € N and m; for ¢ < k,
let S = {b, | m; <mforall i < k}. Since every neighborhood of p contains
a tail an,any1,aN+2,..., every neighborhood of p intersects S. Therefore,
p € S. Hence, f(p) € f(S); hence, f(S)N B (f(p), %) # &. Therefore, we may
choose my, such that d(f(bm,), f(p)) < 3 and such that my, > m; for all i < k.
Therefore, d(f(cx), f(p)) < + — 0, which implies f(cx) = f(p). O

Theorem 4. If f: X — Y is a continuous map between metric spaces and X
s compact, then f is uniformly continuous.

Proof. Given f: X — Y continuous and dx(an,b,) — 0, we will show that
dy (f(an), f(bn)) — 0. Let py, = ap,, and g, = by, where ng <ng <mng < ---.
By the Subsubsequence Lemma, it is enough to find m; < mgo < mz < ---
such that dy (f(rk), f(sx)) — 0 where ry = pp, and s = ¢p,. Since X



is compact, we may choose x € X and m; < me < mg < --- such that
ry — x. Since dx(an,b,) — 0, we also have dx(rg,s;) — 0. Therefore,
sk — x. Since f is continuous, f(ry) — f(x) and f(sx) — f(z). Therefore,
dy (f(rx), f(sk)) = 0. O



