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Summary. We take some standard concepts and theorems about metric
spaces that use “ε,” prove the concepts equivalent to a sequential concepts that
replace “ε” and any explicit inequalities with subsequences and limits, and prove
the theorems using these subsequences.

• Continuity, uniform continuity, Cauchy sequences, totally bounded metric
spaces, and compact metric spaces are characterized in terms of subse-
quences.

• Subsequences are used to prove that uniformly continuous images preserve
the Cauchy property and total boundedness.

• Subsequences are used to prove that the compact metric spaces are exactly
the complete totally bounded metric spaces.

• Subsequences are used to prove the Uniform Continuity Theorem.

Definition 1. Given a topological spaceX, p ∈ X, and a sequence c1, c2, c3, . . . ∈
X, we write cn → p if for every neighborhood U of p there exists N ∈ N such
that cN , cN+1, cN+2, . . . ∈ U .

Definition 2. Given a map between f : X → Y between metric spaces,

• f is uniformly continuous if, for every ε > 0 there exists δ > 0 such that
dX(a, b) < δ implies dY (f(a), f(b)) < ε;

• f is sequentially uniformly continuous if

dX(an, bn)→ 0 implies dY (f(an), f(bn))→ 0.

Lemma 1. A map between f : X → Y between metric spaces is uniformly
continuous if and only if it is sequentially uniformly continuous.

Proof. First, we assume uniform continuity and prove sequential uniform con-
tinuity. Given dX(an, bn)→ 0 and ε > 0, it is enough to find a tail of distances
(dY (f(an), f(bn)))n≥N all < ε. Choose δ > 0 such that, for all a, b ∈ X,
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dX(a, b) < δ implies dY (f(a), f(b)) < ε. Since dX(an, bn) → 0, there is a tail
of distances (dX(an, bn))n≥N all < δ. Therefore dY (f(an), f(bn)) < ε for all
n ≥ N .

Now we assume sequential uniform continuity and prove uniform continu-
ity. Given ε > 0, it is enough to find δ > 0 such that dX(a, b) < δ implies
dY (f(a), f(b)) < ε. Seeking a contradiction, suppose there is no such δ. For
each n ∈ N, case δ = 1

n allows us to choose an, bn ∈ X such that dX(an, bn) < 1
n

but dY (f(an), f(bn)) ≥ ε. Therefore, dX(an, bn)→ 0 but dY (f(an), f(bn)) 6→ 0,
in contradiction with sequential uniform continuity.

Definition 3. We say that sequence b1, b2, b3, . . . is a subsequence of sequence
a1, a2, a3, . . . if there exist n1 < n2 < n3 < · · · such that ank

= bk for all k ∈ N.

Definition 4. Suppose a1, a2, a3, . . . is a sequence in a metric space.

• Given ε > 0, we say a1, a2, a3, . . . is ε-stable if d(am, an) < ε for all m,n ∈
N.

• We say a1, a2, a3, . . . is Cauchy if, for every ε > 0, there is an ε-stable tail
aN , aN+1, aN+2, . . ..

• We say a1, a2, a3, . . . is sequentially Cauchy if d(bn, cn)→ 0 for all pairs of
subsequences b1, b2, b3, . . . and c1, c2, c3, . . ..

Lemma 2. A sequence a1, a2, a3, . . . is Cauchy if and only if it is sequentially
Cauchy.

Proof. First, assume a1, a2, a3, . . . is Cauchy. Given subsequences bk = amk

and ck = ank
, we will show that d(bk, ck) → 0. To do this, we assume ε > 0

and then find a tail d(bK , cK), d(bK+1, cK+1), d(bK+2, cK+2), . . . all less than ε.
By assumption, there is an L such that aL, aL+1, aL+2, . . . is ε-stable. Choose
K large enough that mK , nK ≥ L. Then d(bk, ck) < ε for all k ≥ K. Thus,
a1, a2, a3, . . . is sequentially Cauchy.

Now instead assume that a1, a2, a3, . . . is sequentially Cauchy. We will show
it is Cauchy. Seeking a contradiction, suppose it is not, that ε > 0 and no
tail aN , aN+1, aN+2, . . . is ε-stable. We will reach a contradiction by finding
subsequences p1, p2, p3, . . . and q1, q2, q3, . . . such that d(pk, qk) ≥ ε for all k ∈ N.
Let s1 = t1 = 1 and then, given n ∈ N and given s1 < t1 < s2 < t2 < · · · <
sn < tn, choose tn+1 > sn+1 > tn such that d(asn+1

, atn+1
) ≥ ε, which is

possible because the tail atn+1, atn+2, atn+3, . . . is not ε-stable. The resulting
subsequences pk = ask and qk = atk are as desired.

Theorem 1. If f : X → Y is a uniformly continuous map between metric spaces
and a1, a2, a3, . . . is Cauchy in X, then f(a1), f(a2), f(a3), . . . is Cauchy in Y .

Proof. Given subsequences p1, p2, p3, . . . and q1, q2, q3, . . . of f(a1), f(a2), f(a3), . . .,
say, pk = f(amk

) and qk = f(ank
) where m1 < m2 < m3 < · · · and n1 < n2 <

n3 < · · · , let bk = amk
and ck = ank

. Then d(bk, ck)→ 0 because a1, a2, a3, . . .
is Cauchy. Since f is uniformly continuous, d(pk, qk) = d(f(bk), f(ck)) → 0
too.
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Definition 5.

• A metric space X is totally bounded if, for each ε > 0, X has a finite open
covering by ε-balls: X =

⋃
i≤nB(xi, ε).

• A metric space X is sequentially totally bounded if every sequence has a
Cauchy subsequence.

Lemma 3. A metric space X is totally bounded if and only if it is sequentially
totally bounded.

Proof. First we assume sequential total boundedness and prove total bounded-
ness. Let ε > 0. Assuming that X is not covered by finitely many ε-balls,
we will prove a contradiction. Define a sequence x1, x2, x3, . . . by choosing
xn ∈ X −

⋃
i<nB(xi, ε) for each n ∈ N. Let n1 < n2 < n3 < · · · be such

that yk = xnk
is a Cauchy subsequence. The sequence y1, y2, y3, . . . has an

ε-stable tail yK , yK+1, yK+2, . . .; hence, yK+1 ∈ B(yK , ε), which contradicts
xnK+1

∈ X −
⋃
i<nK+1

B(xi, ε).
Now we assume total boundedness and prove sequential total boundedness.

Suppose a1, a2, a3, . . . ∈ X. For each n ∈ N, let Fn ⊂ X be finite and such
that X =

⋃
x∈Fn

B
(
x, 1

n

)
. Construct a chain I1 ⊃ I2 ⊃ I3 ⊃ · · · of infinite

subsets of N as follows. Let I0 = N. Given infinite In−1 ⊂ N infinite, choose,
for each i ∈ In−1, a point f(i) ∈ Fn such that af(i) ∈ B

(
f(i), 1

n

)
. Since In−1 is

infinite and Fn is finite, f must send infinitely many inputs to the same output.
Choose xn ∈ Fn and In = f−1({xn}) such that In is infinite. Then In−1 ⊃ In
as required.

Now choose n1 < n2 < n2 < · · · as follows. Given m ∈ N and ni for all
i < m, choose nm from the infinite set Im such that nm > ni for all i < m. We
claim that the resulting subsequence bm = anm

is Cauchy. To prove this, we
will find, given ε > 0, an ε-stable tail bM , bM+1, bM+2, . . .. Choose M such that
1
M ≤

ε
2 . Suppose M ≤ i, j. Then ni, nj ∈ IM . Hence, d(bi, bj) ≤ d(bi, xM ) +

d(xM , bj) < ε. Thus, bM , bM+1, bM+2, . . . is ε-stable.

Theorem 2. If f : X → Y is uniformly continuous and X is totally bounded,
then f(X) is totally bounded.

Proof. Assume f : X → Y is uniformly continuous and X is totally bounded.
Let y1, y2, y3 . . . ∈ f(X) and choose xn such that yn = f(xn), for each n ∈ N.
By assumption, there are n1 < n2 < n3 < · · · such that w1, w2, w3, . . . is Cauchy
where wm = xnm

. By Theorem 1, setting zm = f(wm) makes z1, z2, z3, . . . a
Cauchy subsequence of y1, y2, y3 . . .. Thus, f(X) is totally bounded.

Lemma 4. A convergent sequence in a metric space is Cauchy.

Proof. Given an → x in a metric space and subsequences bk and ck, we have
bk → x and ck → x, which together imply d(bk, ck) ≤ d(bk, x)+d(x, ck)→ 0.

Lemma 5. If a1, a2, a3, . . . is a Cauchy sequence with convergent subsequence
bk = ank

→ x, then an → x.
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Proof. Since a1, a2, a3, . . . is sequentially Cauchy, d(ak, bk) → 0. Therefore,
ak → x.

Definition 6.

• A metric space X is complete if every Cauchy sequence converges.

• A topological space is compact if every open cover has a finite subcover.

• A metric space is sequentially compact if every sequence has a convergent
subsequence.

Lemma 6. A metric space X is sequentially compact if and only if it is sequen-
tially totally bounded and complete.

Proof. If X is sequentially totally bounded and complete, then every sequence
has a Cauchy subsequence which converges, making X sequentially compact.
To prove the converse, suppose that X is sequentially compact. Then every
sequence has a convergent subsequence which is Cauchy, making X totally
bounded. To see that X is also complete, suppose that a1, a2, a3, . . . is Cauchy.
By assumption, there is a convergent subsequence bm = anm

→ x. By Lemma 5,
a1, a2, a3, . . . converges.

Lemma 7. A metric space X is sequentially compact if and only if it is compact.

Proof. First, suppose X is compact. Then X is totally bounded because if ε > 0
then {B(x, ε) | x ∈ X} is an open cover with a finite subcover. Therefore,
to show that X is sequentially compact, it suffices to show that X is complete.
So, given a1, a2, a3, . . . Cauchy, we will show that an → p for some p ∈ X.
Let C =

⋂
N∈N CN where CN = {an | n ≥ N}. Since each CN is closed and

nonempty and C1 ⊃ C2 ⊃ C3 ⊃ · · · , compactness of X implies that C is
nonempty. Choose p ∈ C. Given ε > 0, choose N such that aN , aN+1, aN+2, . . .
is ε/2-stable. Since p ∈ C ⊂ CN , the neighborhood B(p, ε/2) of p intersects
{an | n ≥ N}. So, choose M ≥ N such that d(p, aM ) < ε/2. Then d(an, p) ≤
d(an, aM ) + d(aM , p) < ε for all n ≥ N . Thus, an → p.

Now instead suppose that X is sequentially compact. Given an open cover
U of X without a finite subcover, we will prove a contradiction. For each n ∈ N,
let Fn ⊂ X be finite and such that X =

⋃
x∈Fn

B
(
x, 1

n

)
. For each n, if B

(
x, 1

n

)
were covered by a finite Gx ⊂ U for each x ∈ Fn, then

⋃
x∈Fn

Gx would be a finite

subcover of U . So, choose xn ∈ Fn such that B
(
xn,

1
n

)
is not covered by any

finite G ⊂ U . By sequential compactness, there are z and n1 < n2 < n3 < · · ·
such that yk → z where yk = xnk

. Then B(z, δ) ⊂ U ∈ U for some δ, U .
Choosing k large enough that 1

nk
≤ δ

2 and d(yk, z) ≤ δ
2 , we have

B

(
yk,

1

nk

)
⊂ B(z, δ) ⊂ U ∈ U ,

which contradicts B
(
xnk

, 1
nk

)
not being covered by any finite G ⊂ U .
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Theorem 3. A metric space X is compact if and only if it is totally bounded
and complete.

Proof. Combine Lemmas 6 and 7.

Lemma 8 (Subsubsequence Lemma). Given a topological space X, p ∈ X, and
a sequence c1, c2, c3, . . . ∈ X, suppose that, for every subsequence bm = cnm

where n1 < n2 < n3 < · · · , there exists a subsubsequence ak = bmk
where

m1 < m2 < m3 < · · · such that ak → p. Then cn → p.

Proof. Seeking a contradiction, suppose that cn 6→ p. Then there is a neighbor-
hood U of p such that U does not contain any tail cN , cN+1, cN+2, . . .. Choose
n1 < n2 < n3 < · · · by the following method of selecting nm for each m ∈ N.
Given m ∈ N and ni for i < m, choose N > ni for all i < m, observe that
{cN , cN+1, cN+2, . . .} 6⊂ U , and then choose nm ≥ N such that cnm

6∈ U .
By construction, the subsequence b1, b2, b3, . . . where bm = cnm

avoids U .
By assumption, b1, b2, b3, . . . has a subsequence ak = bmk

→ p. Hence, some tail
aK , aK+1, aK+2, . . . is in U . But aK = bmK

6∈ U by construction. Contradiction!

Definition 7. Given a function f : X → Y between topological spaces,

• f is continuous if p ∈ A implies f(p) ∈ f(A);

• f is sequentially continuous if an → p implies f(an)→ f(p).

Lemma 9. Given a function f : X → Y between metric spaces, f is continuous
if and only if it is sequentially continuous.

Proof. Suppose f is sequentially continuous. Given p ∈ A ⊂ X, choose an ∈
A ∩ B

(
p, 1

n

)
for each n ∈ N. Then an → p. Hence, f(an) → f(p). Hence,

f(p) ∈ {f(an) | n ∈ N} ⊂ f(A).
Now suppose f is continuous. Given an → p ∈ X, we will show that f(an)→

f(p). Let bm = anm
where n1 < n2 < n3 < · · · . By the Subsubsequence Lemma,

it is enough to find m1 < m2 < m3 < · · · such that f(ck) → f(p) where
ck = bmk

. Choose m1,m2,m3, . . . as follows. Given k ∈ N and mi for i < k,
let S = {bm | mi < m for all i < k}. Since every neighborhood of p contains
a tail aN , aN+1, aN+2, . . ., every neighborhood of p intersects S. Therefore,
p ∈ S. Hence, f(p) ∈ f(S); hence, f(S) ∩ B

(
f(p), 1k

)
6= ∅. Therefore, we may

choose mk such that d(f(bmk
), f(p)) < 1

k and such that mk > mi for all i < k.
Therefore, d(f(ck), f(p)) < 1

k → 0, which implies f(ck)→ f(p).

Theorem 4. If f : X → Y is a continuous map between metric spaces and X
is compact, then f is uniformly continuous.

Proof. Given f : X → Y continuous and dX(an, bn) → 0, we will show that
dY (f(an), f(bn))→ 0. Let pm = anm and qm = bnm where n1 < n2 < n3 < · · · .
By the Subsubsequence Lemma, it is enough to find m1 < m2 < m3 < · · ·
such that dY (f(rk), f(sk)) → 0 where rk = pmk

and sk = qmk
. Since X

5



is compact, we may choose x ∈ X and m1 < m2 < m3 < · · · such that
rk → x. Since dX(an, bn) → 0, we also have dX(rk, sk) → 0. Therefore,
sk → x. Since f is continuous, f(rk) → f(x) and f(sk) → f(x). Therefore,
dY (f(rk), f(sk))→ 0.
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