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Abstract. We show that, given finitely many line-segment mirrors in the plane, that do not
touch, and an arbitrary point source of light, if all angles made by lines parallel to mirrors are
rational multiples of π, then all but countably many emitted light beams escape. This result
is shown to imply that, for a given point source of light, a randomly chosen configuration of
finitely many nontouching line-segment mirrors has a nonzero probability of letting at least one
light beam escape.

1. Introduction. In the plane, is there a configuration of finitely many line-segment
mirrors, with both sides being reflective, that can trap all the light from a given point
source without allowing the mirrors to touch each other? The first published mention of
this problem is by O’Rourke and Petrovici [1], and it remains an open problem, though
we develop a partial solution here. O’Rourke and Petrovici note that the same problem
for circular mirrors is also open, though some other related problems have been solved;
see their paper for more background on these type of problems.

To state this problem in a proper mathematical fashion, let us formulate a precise
definition of light beams. The state of a light beam at any given moment is defined
as its position and direction of travel; we assume light travels with unit speed. The
initial state of a light beam determines all its subsequent states; hence, a light beam is
a map from its initial state and time elapsed to its current state. The dynamics of our
light beams are as in geometric optics, with light beams bouncing off of mirrors in the
obvious way, without refraction, diffraction, and the like. Also, as in geometric optics,
light beams do not interfere with each other.

The only tricky matter is saying what happens to a light beam that hits a mirror
endpoint. Let us agree that mirror endpoints absorb all light beams. This convention
might be questionable, but it is of great technical aid. Moreover, our conclusions are
of the form “at least this many light beams escape”; hence, not absorbing light beams
incident on mirror endpoints would not hurt our conclusions, as it would only make
escape easier.

Let us make two more conventions. First, mirrors do not contain their endpoints;
hence, whenever we speak of a point being on a mirror or of a light beam hitting a
mirror, we are not including the possibility of that point being a mirror endpoint or
of that light beam hitting a mirror endpoint. Second, if a light beam is initially on a
mirror or a mirror endpoint and its initial direction is into that mirror, then the light
beam is absorbed.

We also need to define the term “trapped” precisely. A light beam is said to be
trapped if it hits mirrors infinitely many times, and hence does not get absorbed by, say,
hitting a mirror endpoint. A light beam that is not trapped, nor ever absorbed, is said
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to escape because it necessarily traces out an infinitely long ray after hitting mirrors
finitely many times.

Given this more precise version of the problem, we use nothing more advanced than
elementary point-set topology and a tiny bit of measure theory to draw the following
conclusions. For a special type of mirror configuration we can guarantee that, from
each initial position, only countably many initial directions do not escape if the mirrors
do not touch. This special type is the rational mirror configuration, where rationality
means that all angles formed by lines parallel to mirrors are rational multiples of π.
Moreover, for any given initial light-beam position, if we choose a random configuration
of mirrors from a bounded open subset of the configuration space, then, with nonzero
probability, for at least one initial direction, the light beam escapes. This last result
follows from the density of the rational configuration in the configuration space, along
with a continuity argument.

To reach the above conclusions, in Section 2 we set up our notation, along with
two ways of modelling the dynamics of a light beam: one in which the light beam is
reflected by mirrors, and one in which the mirror configuration is reflected by the light
beam in a certain way. In Section 3 we prove general results applicable to all mirror
configurations, including the result that, for a given initial position, only countably
many initial directions produce a periodically trapped light beam. In Section 4 we build
on these results, showing how rationality can reduce the three-dimensional dynamical
system of a light beam’s state into a one-dimensional system. Analysis of this one-
dimensional system shows that in the rational case, only countably many directions
of travel are attained by light beams that are aperiodically trapped. Combining this
analysis with our results on periodic trapping yields our conclusions.

2. Preliminaries. We define a mirror to be a nonempty open line segment in the com-
plex plane, in accordance with our convention that mirrors not include their endpoints.
Therefore, two mirrors do not touch if and only if their closures are disjoint.

We also represent mirrors in another space. For our purposes, S1 is defined as
{z ∈ C : |z| = 1}. Set M1 = C× (0,∞)×S1. We then represent mirrors as elements of
M1, with the first component of an element being the position of a mirror endpoint, the
second component being the length of the mirror, and the third component being the
direction in which the mirror extends from the endpoint specified by the first component.
Note that mirrors are not uniquely represented: for example, 〈3 + 4i, 2, 1〉 is the same
mirror as 〈5 + 4i, 2,−1〉.

With the map g defined below, we make explicit the correspondence between mirrors
and their representations. We denote the powerset operator by P. Define g as follows:

g : M1 → P(C) by g(x, l, u) = {x + ru : r ∈ (0, l)} .

Strictly speaking, g(Mi) is the mirror represented by Mi, but it is shorter to write “the
mirror Mi” when referring to g(Mi). We frequently use this abbreviation.

Let n be the number of mirrors. Let the mirrors be ordered by choosing an element
M in the Cartesian product Mn

1 such that each mirror is represented by one of the
coordinate projections of M . We denote the ith coordinate projection map by πi. We
abbreviate πi(M) with Mi, making the disjointness requirement g(Mi)∩ g(Mj) = ∅ for
all distinct i, j = 1, . . . , n.

Let Mn be the set of all mirror configurations in Mn
1 such that the closures of the

mirrors are pairwise disjoint. We call Mn the space of legal configurations of n mirrors.
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It is easily checked that Mn is open in Mn
1 . Let us assume M ∈Mn.

Finally, let us define some abbreviations for our mathematical representation of
mirrors. For a given legal mirror configuration H, let δ(H) denote the minimum distance
between mirrors in H, and let L(H) denote the maximum mirror length in H. Note
that both are positive because there are finitely many mirrors, all with pairwise disjoint
closures of finite length. Also, denote the projection from M1 to C by ζ, from M1 to
(0,∞) by λ, and from M1 to S1 by θ.

With the mirrors mathematically modelled, let us now represent the light beams
mathematically. Take the position space to be C and the direction space to be S1.
Also, use angle brackets to denote ordered tuples. Given a position q0 and a direction
p0, the ordered pair 〈q0, p0〉 is a light-beam state. Suppose t is a nonnegative real. To
describe the dynamics of a light beam, let q(q0, p0, t) and p(q0, p0, t) denote the position
and direction that a light beam attains at time t if its state at time 0 is 〈q0, p0〉. If a
light beam is absorbed prior to time t, then leave q(q0, p0, t) and p(q0, p0, t) undefined.

Given a nonnegative integer k, let τk(q0, p0) denote the kth time at which the light
beam with initial state 〈q0, p0〉 hits a mirror or mirror endpoint, not counting time 0
if the light beam was initially on a mirror or mirror endpoint. If this light beam hits
mirrors or mirror endpoints less than k times, then set τk(q0, p0) = ∞. If k = 0, then
set τk(q0, p0) = 0. Similarly, set µk(q0, p0) = i where i is such that, at time τk(q0, p0),
the light beam with initial state 〈q0, p0〉 lies on the closure of the mirror Mi. If no such
i exists, then set µk(q0, p0) = 0. Call the sequence of indices of mirrors hit by a light
beam its hit sequence, and say that its hit sequence is trapped if it contains infinitely
many nonzero elements. Therefore, a light beam is trapped if and only if its hit sequence
is trapped.

As described in the introduction, our light beams travel with unit speed, and between
reflections, they simply travels in straight lines. Symbolically, we have the following for
each nonnegative integer i:

q(q0, p0, t) = q (q0, p0, τi(q0, p0)) + tp (u, τi(q0, p0)) for τi(q0, p0) < t ≤ τi+1(q0, p0),
(2-1)

p(q0, p0, t) = p (q0, p0, τi(q0, p0)) for τi(q0, p0) < t < τi+1(q0, p0).

To describe what happens at reflections, we employ analytic geometry. Let us use
the overline operator to represent complex conjugation as well as topological closure,
using context to disambiguate. It is easily checked that

p (q0, p0, τi+1(q0, p0)) = θ
(
Mµi+1(q0,p0)

)2
p (q0, p0, τi(q0, p0)). (2-2)

Note that the current state of a light beam determines all of its earlier states, except
for light beams that are absorbed. Indeed, suppose

〈q1, p1〉 = 〈q(q0, p0, t), p(q0, p0, t)〉.

If q1 is not on a mirror or mirror endpoint, then

〈q, p〉(q0, p0, s) = 〈q,−p〉(q1,−p1, t− s) for s ∈ [0, t]− {τi(q0, p0) : i ≥ 1}. (2-3)

This formula just says that to determine a light beam’s past we do the obvious thing:
reverse its direction and see where it goes. If q1 lies on the mirror Mi with a direction
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not parallel to that mirror, then we first have to undo a reflection before reversing
direction; hence, the following formula is used instead:

〈q, p〉(q0, p0, s) = 〈q,−p〉(q1,−θ(Mi)
2
p1, t− s

)
for s ∈ [0, t]− {τi(q0, p0) : i ≥ 1}

We could use this time-reversed determinism to explicitly define q and p for negative
time values, but (2-3) suffices for this paper.

An alternative way to model reflections is to apply them to the complex plane
instead of to the beams of light that travel across it. In this model, all light beams
travel as straight lines, whereas the mirror configuration can be different for different
light beams and be different for the same light beam at different times. For all light
beams, the mirror configuration at time 0 is as usual. However, when a light beam
hits a mirror, the mirror configuration for that light beam is reflected about the mirror
hit. Thus, although all light beams start with the same mirror configuration, if they
hit different mirrors or hit mirrors at different times, then they needn’t have the same
mirror configurations at a later time. Conversely, if, up until a certain time, two light
beams have hit the same mirrors in the same order, then the light beams have the same
mirror configurations at that time.

Given a nonnegative real t and a light-beam state 〈q0, p0〉, define q′(q0, p0, t) and
p′(q0, p0, t) as the position and direction, respectively, that the light beam with initial
state 〈q0, p0〉 attains at time t in this alternative model. Note that p′ is constant with
respect to time; hence, q′(q0, p0, t) = q0 + p0t. Let M ′(q0, p0, t) denote the mirror
configuration that that light beam has a time t. See Figure 2-1.

Light beam in standard model

Light beam in alternative model

M2

M3

M1 M
′

1
at time τ3

M
′

3
at time τ2

M
′

2
at time τ3

M
′

2
at time τ2

M
′

1
at time τ1

M
′

3
at time τ1

M
′

1
at time τ2

M
′

3
at time τ3

M
′

2
at time τ1

Figure 2-1. Reflecting the light beam vs. reflecting the underlying plane.
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To transform q′(q0, p0, t) to q(q0, p0, t), we perform a finite sequence of affine trans-
formations that depend only on the sequence of mirrors hit, before time t, by the light
beam with initial state 〈q0, p0〉. Specifically, on q(q0, p0, t) we perform each reflection
that was performed on the mirror configuration of the light beam up until time t, but
in reverse order. It follows that, if two light beams have respective initial states 〈x1, v1〉
and 〈x2, v2〉, and hit the same mirrors in the same order up until respective times t1
and t2, then

|q(x1, v1, t1)− q(x2, v2, t2)| = |q′(x1, v1, t1)− q′(x2, v2, t2)| . (2-4)

This equation is crucial to the proofs of Theorem 3-1 and Lemma 3-3.

3. General Results. In this section, we prove several theorems that apply to all legal
mirror configurations. These theorems are the foundation of the next section.

Theorem 3-1. Given two light beams with initial states 〈x1, v1〉 and 〈x2, v2〉, if the
light beams have equal, trapped hit sequences, then v1 = v2.

Proof: Intuitively, the two beams, represented as straight lines using q′, become
arbitrarily far apart after sufficient time if they are not parallel; hence, they cannot hit
the same infinite sequence of mirrors. See Figure 3-1.

Figure 3-1. Why two light beams’ hit sequences eventually disagree if they are not
parallel.
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Between each reflection, a light beam travels in a straight line at unit speed, and it
must traverse at least the minimum distance between mirrors. Therefore, for all k > 0,
we have τk(x1, v1) ≥ kδ(M) and τk(x2, v2) ≥ kδ(M).

Let f(t1, t2) = |q′(x1, v1, t1)− q′(x2, v2, t2)|2. Then

f(t1, t2) = t21 + t22 − 2t1t2Re (v1v2) + 2t1Re ((x1 − x2)v1)

+ 2t2Re ((x2 − x1)v2) + |x1 − x2|2.

Transforming to polar coordinates using t1 = r cos(ω) and t2 = r sin(ω), we get

f(t1, t2) = r2 (1− sin(2ω)Re(v1v2)) + 2rRe ((x1 − x2)v1 cos(ω) + (x2 − x1)v2 sin(ω))

+ |x1 − x2|2.

Suppose v1 6= v2. Then Re(v1v2) < 1; hence, 1− sin(2ω)Re(v1v2) has a positive global
minimum with respect to ω. Denote this minimum by a. Let b denote the global
minimum of

2Re ((x1 − x2)v1 cos(ω)− (x1 − x2)v2 sin(ω))

with respect to ω. It follows that f(t1, t2) ≥ ar2 + br + |x1 − x2|2. If t1 = τk(x1, v1) and
t2 = τk(x2, v2), then r ≥ max{τk(x1, v1), τk(x2, v2)} ≥ kδ(M); hence, for sufficiently
large k, we have

f (τk(x1, v1), τk(x2, v2)) > L(M)2. (3-1)

The light beams hit the same sequence of mirrors; hence, by (2-4), the distance
∣∣q (x1, v1, τk(x1, v1))− q (x2, v2, τk(x2, v2))

∣∣ (3-2)

is unchanged if q′ replaces q; hence, (3-1) implies this distance gets arbitrarily large as
k increases. However, at times τk(x1, v1) and τk(x2, v2), the light beams with respective
initial states 〈x1, v1〉 and 〈x2, v2〉 hit the same mirror; consequently, the distance between
their positions, which is exactly the quantity in (3-2), is not greater than the length of
that mirror, and hence not greater than L(M). We therefore conclude that v1 = v2. 2

We say that a direction p0 is aperiodic if there is no complex number q0 such that
the light beam with initial state 〈q0, p0〉 has a periodic trapped hit sequence.

Corollary 3-2. All but countably many directions are aperiodic.

Proof: There are only countably many periodic trapped hit sequences because the set
of all periodic infinite sequences of elements of {1, . . . , n} is countable. By Theorem 3-1,
there is at most one initial direction for which a light beam attains a given trapped hit
sequence, regardless of initial position. 2

We note that O’Rourke and Petrovici provide a different proof of Corollary 3-2 in
[1, p. 138].

The proof of Theorem 3-1 very similar to the proof of the following lemma. This
lemma is used to prove Theorem 3-4.

Lemma 3-3. Suppose that two light beams have initial states 〈q0 + s1p1, p1〉 and
〈q0 + s2p2, p2〉 where q0 ∈ C, where s1, s2 ∈ [0,∞), where p1, p2 ∈ S1, and where
p1 6= p2. Also suppose that there is a positive integer k such that the first k elements of
their hit sequences agree and each light beam is not absorbed prior to time τk+1 evaluated
at that light beam’s initial state. For each light beam, consider the line segment formed

6



by the light beam’s positions from times τk to τk+1. Then the distance between these two
line segments is positive:

0 < inf
{|q(q0 + s1p1, p1, t1)− q(q0 + s2p2, p2, t2)| :

ti ∈ [τk(q0 + sipi, pi), τk+1(q0 + sipi, pi)) for all i = 1, 2
}
.

Proof: Figure 3-2 makes the lemma obvious; we just need to express this figure
algebraically.

A1

A2

B1

B2

C1

C2

D1

D2

Figure 3-2. Rays
−−−→
C1C2 and

−−−→
D1D2 cannot intersect; hence, Rays

−−−→
A1A2 and

−−−→
B1B2 can-

not intersect.

Set q1 = q0 + s1p1 and q2 = q0 + s2p2. For all t1 in [τk(q1, p1), τk+1(q1, p1)) and for
all t2 in [τk(q2, p2), τk+1(q2, p2)), the sequence of mirrors hit before time t1 by the light
beam with initial state 〈q1, p1〉 agrees with the sequence of mirrors hit before time t2
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by the light beam with initial state 〈q2, p2〉; hence, we have

|q(q1, p1, t1)− q(q2, p2, t2)| = |q′(q1, p1, t1)− q′(q2, p2, t2)|
= |q0 + p1(s1 + t1)− (q0 + p2(s2 + t2))|
=

√
(s1 + t1)2 − 2(s1 + t1)(s2 + t2)Re(p1p2) + (s2 + t2)2.

Transforming to polar coordinates using s1 + t1 = r cos(ω) and s2 + t2 = r sin(ω), we
obtain

|q(q1, p1, t1)− q(q2, p2, t2)| = r
√

1− Re(p1p2) sin(2ω)

≥ max{s1 + t1, s2 + t2}
√

1− Re(p1p2) sin(2ω).

Since p1 6= p2, we have Re(p1p2) < 1; hence,
√

1− Re(p1p2) sin(2ω) has a positive
global minimum with respect to ω. Let A denote this minimum. It follows that

inf
{|q(q1, p1, t1)− q(q2, p2, t2)| : ti ∈ [τk(qi, pi), τk+1(qi, pi)) for all i = 1, 2

}

≥ max{s1 + τk(q1, p1), s2 + τk(q2, p2)}A.

Since k is positive, τk(q1, p1) and τk(q2, p2) are both positive; hence, the right side of
the above inequality is positive. 2

Before stating Theorem 3-4, we need to make some definitions. Given any two, not
necessarily distinct, complex numbers x and x′, we define a path from x to x′ to be a
light-beam state 〈q0, p0〉 where q0 is not on a mirror or a mirror endpoint, and where
there exist positive reals t and t′ such that q(q0,−p0, t) = x and q(q0, p0, t

′) = x′. If u is
a direction, then we say u allows a path from x to x′ if there exists a complex number y
such that 〈y, u〉 is a path from x to x′. We say that a direction is degenerate if it allows
a path from a mirror endpoint to a mirror endpoint.

Theorem 3-4. For any two complex numbers x and x′, there are only countably
many directions that allow a path from x to x′.

Proof: Suppose 〈q0, p0〉 is a path from x to x′. We first show that this hypothesis
implies the existence of a path from x to x′ with a position component arbitrarily close
to x. Let t satisfy q(q0,−p0, t) = x, and let t′ satisfy q(q0, p0, t

′) = x′. The light beam
with initial state 〈q0,−p0〉 hits mirrors finitely many times before reaching x; hence,
it travels at constant direction from the last of these hit points to x. Let u be the
opposite of this direction. Let ε be a positive real less than the infimum of distances
from x to any point on the closure of any mirror, except for the closure of the mirror
x is on, if it is indeed on the closure of some mirror. Then x + εu is not on a mirror
or a mirror endpoint, and there exists an s in (0, t) such that q(q0,−p0, s) = x + εu. It
follows from (2-3) that 〈q, p〉(x+ εu, u, s) = 〈q0, p0〉; hence, q(x+ εu, u, s+ t) = x′. Also,
q(x + εu,−u, ε) = x; hence, 〈x + εu, u〉 is a path from x to x′.

We next show that there are only countably many directions w such that 〈x+εw,w〉
is a path from x to x′. Suppose that v is in S1 − {u}, and 〈x + εv, v〉 is a path from
x to x′. Then the light beams with initial states 〈x + εu, u〉 and 〈x + εv, v〉 both hit
mirrors finitely many times before reaching x′. Moreover, at least one of these light
beams must hit at least one mirror; otherwise, the light beams travel in straight lines
forever, making it impossible for both to reach x′.
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Suppose that both beams hit the same finite sequence of mirrors before reaching x′,
and denote the sequence’s length by k. Then Lemma 3-3 implies that

0 < inf
{|q(x + εu, u, t1)− q(x + εv, v, t2)| : t1 ∈ [τk(x + εu, u), τk+1(x + εu, u))

and t2 ∈ [τk(x + εv, v), τk+1(x + εv, v))
}
.

However, both light beams reach x′ at, or prior to, the times of their (k + 1)th mirror
hits, their escape, or their absorption; hence, the above infimum must be zero, a con-
tradiction. Therefore, u and v must correspond to different finite sequences of mirrors.
Therefore, there is an injection from the set of all directions w such that 〈x + εw, w〉 is
a path from x to x′ to the countable set of finite sequences of elements of {1, . . . , n};
hence, the former set is countable too.

Furthermore, for each w in the former set, the light beam with initial state 〈x+εw,w〉
attains only finitely many directions before hitting x′, and the light beam with initial
state 〈x+ εw,−w〉 attains only one direction before hitting x. Therefore, w corresponds
to finitely many directions that allow a path from x to x′; hence, the set of all directions
allowing paths from x to x′ is countable. 2

Another useful result is the equation of periodic hit sequences and periodic light-
beam states. It allows us to speak of periodically and aperiodically trapped light beams
without any confusion. We defer the proof to the next section.

Theorem 3-5. Suppose the light beam with initial state 〈x0, v0〉 has a trapped peri-
odic hit sequence; i.e., there is a positive integer P such that

〈µk(x0, v0)〉∞k=1 = 〈µk+P (x0, v0)〉∞k=1.

Then the light beam’s state is also periodic.

Up to this point, all the properties we have proved about light beams have been
geometrical. These properties, though useful, are not powerful enough for the analysis
of light-beam dynamics we perform in the next section. Some topological results are
needed. Essentially, we need to show that the current state of a light beam is continuous
with respect to both its initial state and the mirror configuration, though we phrase our
topological results in terms of open sets rather than continuity.

The first step in this task is a lemma, which gives an explicit recursive relationship
between a light beam’s states at the times of mirror hits. Expressing this relationship
succinctly requires some abbreviations. Let 〈q0, p0〉 be a light-beam state. For all
positive integers i, set

qi = q(q0, p0, τi(q0, p0)), pi = p(q0, p0, τi(q0, p0)), (3-3)

ζi = ζ(Mµi(q0,p0)), λi = λ(Mµi(q0,p0)), θi = θ(Mµi(q0,p0)). (3-4)

Lemma 3-6. For all positive integers i such that the light beam with initial state
〈q0, p0〉 hits mirrors at least i times, we have

qi =
ζi + θ2

i ζi + θ2
i (qi−1 − p2

i−1qi−1)
1− θ2

i p2
i−1

and pi = θ2
i pi−1. (3-5)
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Proof: The second equation follows immediately from (2-2). Let us prove the first
equation. First, notice that (2-1) implies that there exists a real number t such that
qi = qi−1 + tpi−1. Likewise, since qi ∈ g(Mµi(q0, p0)), there exists a real number l such
that qi = ζi + lθi. Therefore, θi(qi− ζi) and pi−1(qi− qi−1) are both real. Setting these
expressions equal to their conjugates gives two linear equations for qi and qi:

θi(qi − ζi) = θi(qi − ζi), and pi−1(qi − qi−1) = pi−1(qi − qi−1).

Solving the second equation for qi and substituting into the first equation, we find that

(1− θ2
i p2

i−1)qi = ζi + θ2
i ζi + θ2

i qi−1 − θ2
i p2

i−1qi−1.

The lemma follows at once, assuming θ2
i p2

i−1 6= 1. Suppose this assumption fails. Then
pi−1 = ±θi; hence, the light beam’s direction is parallel to the mirror it hits when it
hits it, which is impossible, for mirrors do not include their endpoints. 2

Theorem 3-7. Given an initial light-beam state, the set of legal configurations of
n mirrors that allow the light beam to escape is an open subset of the set of all legal
configurations; i.e., it is open in Mn. Moreover, given a finite sequence of mirror
indices σ, let W denote let the set of legal configurations of n mirrors for which σ is
initial segment of the light beam’s hit sequence. Then W is also open.

Proof: We first prove that, if the light beam escapes for the mirror configuration
M , then there exists a neighborhood of M in Mn, such that, for every element of
this neighborhood, the light beam still escapes. Along the way, we show that, if σ
is an initial segment of the light beam’s hit sequence for the mirror configuration M ,
then there exists a neighborhood of M in Mn, such that, for every element of this
neighborhood, σ is still an initial segment of the light beam’s hit sequence.

First we define some notation. Let the light beam have initial state 〈q0, p0〉. We may
assume 〈q0, p0〉 does not lie on the closure of a mirror, for, if it does, then we can replace
〈q0, p0〉 with 〈q0 + p0δ(M)/2, p0〉 without changing the light beam’s hit sequence. If the
light beam escapes for M , let N be the number of times the light beam hits mirrors.
Otherwise, let N be the length of σ.

Given H ∈Mn, set

DH =
〈
ζ(π1(H)), θ(π1(H)), λ(π1(H)), ζ(π1(H)), θ(π1(H)), λ(π1(H)), . . . ,

ζ(πn(H)), θ(πn(H)), λ(πn(H)), ζ(πn(H)), θ(πn(H)), λ(πn(H))
〉
.

Let i be an arbitrary element of {1, . . . , N}. By induction on Lemma 3-6, qi and pi

are rational functions of q0, p0, and DM . Throughout this proof, we fix q0 and p0.
Therefore, we may think of qi and pi, as well as ζi, θi, and λi, as rational functions on
C6n evaluated at DM . Let qi, pi, ζi, θi, and λi be the corresponding rational functions.

For each i = 1, . . . , N , define Pi, Zi, Θi, and Λi as follows:

Pi : Mn → S1 by Pi(H) = pi(DH),
Zi : Mn → C by Zi(H) = ζi(DH),

Θi : Mn → S1 by Θi(H) = θi(DH),
Λi : Mn → (0,∞) by Λi(H) = λi(DH).
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Each of these functions is continuous: Zi, Θi, and Λi are just projections, and, by
induction using Lemma 3-6, Pi is a polynomial function of Θ1,. . . ,ΘN , Θ1,. . . ,ΘN .

Before we can similarly define Q1, . . . , QN , we must find a way to avoid division by
zero in (3-5). This problem occurs if and only if Θ2

i (H) = P 2
i−1(H) for some i ≤ N . Let

us define M′ as Mn with all these problematic mirror configurations removed:

M′ = {H ∈Mn : Θ2
i (H) 6= P 2

i−1(H) for i = 1, . . . , N}. (3-6)

Now, Θi and Pi are continuous for i = 1, . . . , N ; hence, M′ is open in Mn. Also, note
that M ∈ M′ for the following reason: since the light beam hits mirrors N times for
M , we have θ2

i 6= p2
i−1 for i = 1, . . . , N .

Finally, we define Q1, . . . , QN as follows:

Qi : M′ → C by Qi(H) = qi(DH).

By induction, each Qi is a rational function of P1, Z1, Θ1,. . . ,Pi−1, Zi−1, Θi−1, and their
complex conjugates. Also, the domain of each of Q1, . . . , QN was specifically chosen to
avoid division by zero. Each of these functions is therefore continuous.

Let us construct a neighborhood of M that preserves the first N elements of the
light beam’s hit sequence. For i = 1, . . . , N , let αi(M) be the unique s in (0, 1) such
that qi = ζi +sλiθi. Then αi(M) = θi(qi− ζi)/λi; hence, αi(M) is the rational function
θi(qi − ζi)/λi on C6n evaluated at DM . For each H in M′, set

αi(H) = (θi(qi − ζi)/λi)(DH).

Clearly αi is continuous on M′. Moreover, αi is always real: by Lemma 3-6, we have

θi

λi
(qi − ζi) =

ζi + θ2
i ζi + θ2

i (qi−1 − p2
i−1qi−1)− ζi(1− θ2

i p2
i−1)

λiθi(1− θ2
i p2

i−1)

=
ζiθipi−1 + ζiθipi−1 + θi(qi−1pi−1 − pi−1qi−1)− ζi(θipi−1 − θipi−1)

λiθi(θipi−1 − θipi−1)

=
Re(ζipi−1) + Im(qi−1pi−1)

λiIm(θipi−1)
.

In order to ensure that the first N hits are preserved by a neighborhood of M ,
we must ensure that, for i = 1, . . . , N and for all H in our neighborhood, Qi(H) lies
on the mirror πµi(q0,p0)(H). Hence, we require that our neighborhood be contained
in

⋂N
i=1α

−1
i (0, 1). This set is a neighborhood of M because αi(M) ∈ (0, 1) and αi is

continuous for i = 1, . . . , N .
We also must ensure, for all H in our neighborhood and for i = 1, . . . , N , that no

mirrors or their endpoints get in the way as the light beam travels in a straight line
from Qi−1(H) to Qi(H). Defined below, for each i = 1, . . . , N , is βi(H), the minimum
distance from this straight line to any mirrors other than the ones at Qi−1(H) and
Qi(H):

βi,j : M′ × R× R→ [0,∞) and βi : M′ → [0,∞) given by

βi,j(H,x, y) =
∣∣∣Qi−1(H) + x|Qi(H)−Qi−1(H)|Pi−1(H)

− ζ(πj(H))− yλ(πj(H))θ(πj(H))
∣∣∣,
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βi(H) = inf
⋃

j

βi,j({H} × (0, 1)× (0, 1))

where the union is taken over all j in {1, . . . , n} − {µi−1(q0, p0), µi(q0, p0)}. We require
that, for i = 1, . . . , N and for all H in our neighborhood, we have βi(H) 6= 0; hence, we
require that our neighborhood be contained in

⋂N
i=1β

−1
i (0,∞). By hypothesis, we have

βi(M) > 0; hence,
⋂N

i=1β
−1
i (0,∞) is a neighborhood of M , provided βi is continuous

for i = 1, . . . , N .
Let us show each βi is indeed continuous. Let H be an arbitrary element of M′.

Because βi(H) is the infimum of a finite union of sets, it is also the minimum of the
infimums of these sets. Since the minimum of finitely many continuous functions is also
continuous, we only need to prove that

inf βi,j

({H} × (0, 1)× (0, 1)
)

(3-7)

is continuous with respect to H for j = 1, . . . , n, except µi−1(q0, p0) and µi(q0, p0).
About every H in M′, there is a neighborhood U and a compact set C such that

H ∈ U ⊆ C ⊆ M′. Since βi,j is clearly continuous on M′ × R × R, it is uniformly
continuous on the compact subset C × [0, 1]× [0, 1]. For every 〈x, y〉 in (0, 1)× (0, 1), let
βi,j,x,y be the map from M′ to [0,∞) given by restricting βi,j to M′×{x}×{y}. Denote
this family of maps by Bi,j . The uniform continuity of βi,j on U × (0, 1)× (0, 1) implies
equicontinuity of Bi,j on U . Hence, the infimum of Bi,j is continuous on U . Since H is
an arbitrary element of M′, this infimum is continuous on all of M′. But this infimum
is exactly the expression in (3-7).

Given this continuity,
⋂N

i=1(α
−1
i (0, 1) ∩ β−1

i (0,∞)) is a neighborhood of M that
preserves the the first N elements of the hit sequence of the light beam, proving the
second half of the theorem.

Suppose the light beam escapes for M . Since the light beam escapes after hitting
mirrors N times, the set of subsequenct positions attained by the light beam is a ray
that does not intersect the closure of any mirror. For a sufficiently small neighborhood
V of M , we may choose a positive real R such that, for any H in V, an open disk
in C of radius R contains all the closures of mirrors of H. Given H ∈ M′, let γ(H)
be the minimum distance from all mirrors, except the mirror πµN (q0,p0)(H), to the ray
extended from QN (H) in the direction PN (H) for length 2R:

γi : M′ × R× R→ [0,∞) and γ : M′ → [0,∞) given by

γi(H, x, y) = |QN (H) + xPN (H)− ζ(πi(H))− yλ(πi(H))θ(πi(H))|,
γ(H) = inf

⋃

i

γi({H} × (0, 2R)× (0, 1)),

where the union is taken over all i in {1, . . . , n} − {µN (q0, p0)}. We require that all
H in our neighborhood satisfy γ(H) 6= 0; hence, we require that our neighborhood be
contained in γ−1(0,∞). By hypothesis, γ(M) > 0; hence, γ−1(0,∞) is a neighborhood
of M if γ is continuous. Indeed γ is continuous; the proof is the same as the proof of
continuity of each of β1, . . . , βN .

Therefore, ⋂

1≤i≤N

(
α−1

i (0, 1) ∩ β−1
i (0,∞) ∩ γ−1(0,∞) ∩ V)
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is a neighborhood of M such that, for each of its elements, the light beam hits the same
sequence of mirrors as it does for M and then escapes. 2

Corollary 3-8. Consider the set of legal configurations of n mirrors that allow at
least one light beam emitted from a given initial position to escape. This set is open.

Proof: Given the initial position, for each initial direction v in S1, let Uv be the set of
legal configurations of n mirrors that allow the light beam with the given initial position
and initial direction v to escape. Then Uv is open for all v in S1; hence,

⋃
v∈S1Uv is

open. 2

Theorem 3-7 asserts that each finite initial segment of a light beam’s hit sequence
is invariant under sufficiently small changes in the mirror configuration, and that the
property of escaping is also so invariant. This assertion implies the same invariances
with respect to sufficiently small changes in a light beam’s initial state. The implication
is through the relation between changing the initial of a light-beam state and changing
the mirror configuration. Changing the initial direction is the same as rotating the
mirror configuration; changing the initial position is the same as translating the mirror
configuration.

Theorem 3-9. Let N be a nonnegative integer and let 〈q0, p0〉 be an initial light-
beam state. Suppose that q0 is not on any mirror or mirror endpoint, and that the light
beam with initial state 〈q0, p0〉 hits mirrors at least N times before escaping of being
absorbed. Then there is a neighborhood U of 〈q0, p0〉 in C × S1 such that, for every
〈q′0, p′0〉 in U , the light beams with initial states 〈q0, p0〉 and 〈q′0, p′0〉 agree on the first
N elements of their hit sequences. Also, let W denote the set of all light-beam states
〈q′0, p′0〉 such that 〈q′0, p′0〉 is not on the closure of a mirror, and the light beam with initial
state 〈q′0, p′0〉 escapes after hitting mirrors exactly N times. Then W is open.

Proof: Define a continuous map f from C × S1 to Mn
1 by the following equations,

in which i = 1, . . . , n and x ∈ C and u ∈ S1 are arbitrary:

ζ(πi(f(x, u))) = (ζ(Mi) + q0 − x)p0u,

λ(πi(f(x, u))) = λ(Mi),
θ(πi(f(x, u))) = θ(Mi)p0u.

Then, from elementary geometry, the light beam with initial state 〈q′0, p′0〉 has the same
hit sequence for mirror configuration f(q′0, p

′
0) as the light beam with initial state 〈q0, p0〉

has for mirror configuration M . Moreover, f(q′0, p
′
0) is contained in the space of legal

mirror configurations Mn, for f preserves δ. Therefore, the light beams with initial
states 〈q0, p0〉 and 〈q′0, p′0〉 agree on the first N elements of their hit sequences if and
only if the hit sequence of light beam with initial state 〈q0, p0〉 has the same initial
segment of length N for M as it does for f(q′0, p

′
0).

Let U be a neighborhood of M such that U ⊆ Mn, and, for every element H in
U , the first N elements of the hit sequence of the light beam with initial state 〈q0, p0〉
is the same for M and H. Set U = f−1(U). Then U has the properties stated in the
theorem. The proof of the second half of the theorem is analogous. 2

There is an analogue to Theorem 3-9 for light beams with initial states lying on a
mirror. When we only consider light-beam positions that lie on a particular mirror, let
us use the word “offset.” Given 1 ≤ i ≤ n and x ∈ (0, λ(Mi)), if we are only considering
light-beam states lying on the mirror Mi, then x is the offset corresponding to the
position ζ(Mi) + xθ(Mi).
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Corollary 3-10. Let N and i be nonnegative integers such that 1 ≤ i ≤ n. Let
p0 be in S1 and x0 be in (0, λ(Mi)). Suppose that the light beam with initial state
〈ζ(Mi) + x0θ(Mi), p0〉 hits mirrors at least N times before being absorbed or escaping.
Then there is a neighborhood U of 〈x0, p0〉 in (0, λ(Mi))×S1, such that, for every 〈x′0, p′0〉
in U , the light beams with initial states 〈ζ(Mi)+x′0θ(Mi), p′0〉 and 〈ζ(Mi)+x0θ(Mi), p0〉
agree on the first N elements of their hit sequences. Also, let W denote the set of
offsets and directions 〈x′0, p′0〉 in (0, λ(Mi)) × S1 for which the light beam with initial
state 〈ζ(Mi) + x′0θ(Mi), p′0〉 escapes after hitting mirrors exactly N times. Then W is
open.

Proof: We prove the first assertion of the corollary; the proof of the second is anal-
ogous. Let f(x) = ζ(Mi) + xθ(Mi) for all real x. Then, from the definition of δ(M),
it follows that, for all 〈x′0, p′0〉 in (0, λ(Mi)) × S1, the light beams with initial states
〈f(x′0), p

′
0〉 and 〈f(x′0) + p′0δ(M)/2, p′0〉 have the same hit sequence, except when p′0 is

parallel to the mirror Mi. Let V be a neighborhood of 〈f(x0)+p0δ(M)/2, p0〉 in C×S1

such that the first N elements of the hit sequence of any light beam with initial state
in V agrees with the first N elements of the hit sequence of the light beam with initial
state 〈f(x0) + p0δ(M)/2, p0〉. Since N = 0 if p0 = ±θ(Mi), we may assume V does not
contain the closed set C × {±θ(Mi)}. Let h(x, u) = 〈f(x) + uδ(M)/2, u〉 for all 〈x, u〉
in R× S1. Then h is a continuous map of R× S1 into C× S1. Therefore, take U to be(
(0, λ(Mi))× S1

) ∩ h−1(V ). 2

4. Rational Mirror Configurations. Let Qn denote the set of all representations of
rational mirror configurations in Mn, recalling that a mirror configuration is rational if
and only if all angles made by lines parallel to mirrors are rational multiplies of π. Note
that Qn is a dense subset of Mn, for Mn ∩

(
C× (0,∞)× eπiQ)n is obviously a dense

subset of Mn, and is contained in Qn. Given an initial light-beam position, denote by
E the set of all legal mirror configurations that allow at least one beam with that initial
position to escape. Suppose we prove that, for every mirror configuration in Qn, at
least one light beam with the given initial position escapes. Then Qn ⊆ E , whence E is
dense.

Assuming this density, we can also say something about the measure of E . From
the Lebesgue measure on

(
R2 × (0,∞)× [0, 2π)

)n, construct a measure on Mn in the
obvious way. Then, since E is open, by Corollary 3-8, E has positive measure. Further-
more, since E is both dense and open, its intersection with any nonempty open subset
of Mn is open and nonempty; hence, this intersection also has positive measure. For
any bounded open subset F of Mn, we can normalize our measure on Mn to get a
probability space on F . The measure of E ∩ F in nonzero in this space. We have just
proved the following theorem.

Theorem 4-1. Suppose that, for a given initial position, all rational legal mirror
configurations let at least one light beam with that initial position escape. Then a mir-
ror configuration randomly chosen from a bounded open subset of Mn has a nonzero
probability of letting a light beam with that initial position escape.

Note that there is a sense in which the boundedness requirement in Theorem 4-1 is
superfluous. For any given mirror configuration, we may perform a scale change without
changing whether any light beam escapes, allowing us to assume that the mirrors are
all contained in the unit disk centered about the origin. This assumption implies that
all mirror configurations lie within a bounded subset of Mn

1 .
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Our task for the rest of this paper is to prove the hypothesis of Theorem 4-1. Towards
that end, we henceforth assume that M is a rational mirror configuration. Limiting
ourselves to the rational case is immensely profitable primarily because, as shown in the
next theorem, rational mirror configurations only allow a light beam to attain finitely
many directions. This finiteness places many restrictions on light-beam dynamics.

Theorem 4-2. There is a positive integer Np and a map Γ: S1 → P(S1) such that,
for every direction p0, the following conditions hold:

1. p(q0, p0, [0,∞)) ⊆ Γ(p0) for all q0 ∈ C,
2. Γ(v) = Γ(p0) for all v ∈ Γ(p0), and
3. |Γ(p0)| ≤ Np.

Proof: Since M is rational, for each j = 1, . . . , n, we have θ(Mj)θ(M1) = eπirj for
some rational number rj . For each rj , choose an integer aj and a positive integer bj

such that rj = aj/bj . Let b be the least common multiple of b1, . . . , bn. Because of how
we defined b, for every j, there is an integer cj such that aj/bj = cj/b. Let p0 ∈ S1.
Define the set Γ(p0) by

Γ(p0) =
{
e2πij/bθ(M1)2p0 : 0 ≤ j ≤ b− 1

} ∪ {
e2πij/bp0 : 0 ≤ j ≤ b− 1

}
. (4-1)

Clearly Γ(p0) contains at most 2b elements. Moreover, if v ∈ Γ(p0), then Γ(v) = Γ(p0).
All that remains is to show that a light beam with initial direction p0 only attains
directions in Γ(p0). Since p0 ∈ Γ(p0), we only need to show that any light beam, with
a direction currently in Γ(p0), does not attain a direction outside of Γ(p0) after being
reflected off of a mirror.

A light beam that hits a mirror with direction v leaves that mirror with direction
θ(Mj)2v provided j is the index of the mirror hit. Hence, we only need to show that
θ(Mj)2v ∈ Γ(p0) for j = 1, . . . , n and for all v ∈ Γ(p0). Therefore, choose an arbitrary
k from {0, . . . , b− 1}. If v = e2πik/bp0, then

θ(Mj)2v = e2πi(cj−k)/bθ(M1)2p0 ∈ Γ(p0).

Likewise, if v = e2πik/bθ(M1)2p0, then

θ(Mj)2v = e2πi(cj−k)/bp0 ∈ Γ(p0). 2

For a more precise analysis of light-beam dynamics, we augment our concept of
light-beam state with parity. Define the set of parities to be {±1}. Take even integers
to have parity 1 and odd integers to have parity −1. The initial parity of a light beam
is arbitrary. The parity of a light beam, at a given time, is the product of its initial
parity and the parity of the number of times the light beam has hit mirrors.

We denote light-beam parity by ξ with the symbolic definition given below in the
case where the initial parity is denoted by ξ0:

ξ : C× S1 × [0,∞)× {±1} → {±1}

ξ(q0, p0, t, ξ0) = ξ0(−1)max{i:τi(q0,p0)≤t}
.

Set 〈q, p〉(q0, p0, t, ξ0) = 〈q, p〉(q0, p0, t). We call the ordered triple 〈q, p, ξ〉(q0, p0, t, ξ0)
the augmented state of a light beam at time t provided that the light beam’s initial
augmented state is 〈q0, p0, ξ0〉.
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Given the definition of augmented state, we can augment our results on time-reversed
determinism. Suppose that 〈q0, p0, ξ0〉 is an augmented light-beam state, t is a nonneg-
ative real, and the light beam with initial state 〈q0, p0〉 is not absorbed at or prior to
time t. Set

〈q′0, p′0, ξ′0〉 = 〈q, p, ξ〉(q0, p0, t, ξ0).

If s ∈ [0, t]− {τi(q0, p0) : i ≥ 1} and q′0 is not on a mirror or mirror endpoint, then

〈q, p, ξ〉(q0, p0, s, ξ0) = 〈q,−p, ξ〉(q′0,−p′0, t− s, ξ′0). (4-2)

To prove (4-2), simply count reflections.
Since there are only finitely many mirrors and parities, we have the following corol-

lary to Theorem 4-2.

Corollary 4-3. For every trapped light beam, there is a mirror Mi, a direction v,
and a parity η such that the light beam hits the mirror Mi, with exiting direction v and
exiting parity η, infinitely many times.

Recalling the abbreviations (3-3) and (3-4), for all i ≥ 0, let xi be the unique real
satisfying qi = ζi +xiθi. Then xi = θi(qi−ζi). Also, assuming that ξ0 has been defined,
let ξi = (−1)iξ0. From Lemma 3-6 and some algebra we omit, it follows that

xi+1 = −xi
Im(piθi)

Im(pi+1θi+1)
+

Im(pi(ζi+1 − ζi))
Im(pi+1θi+1)

. (4-3)

Proposition 4-4. Let i and j be positive integers satisfying i < j. If ξi = ξj, if
θi = θj, and if pi = pj, then xj as a function of xi is a translation.

Proof: Since ξi = ξj , the difference j − i is even. Therefore, we have

∂xj

∂xi
=

∏

i≤k<j

∂xk+1

∂xk
= (−1)j−i Im(piθi)

Im(pjθj)
= 1. 2

Note that Proposition 4-4 is still be true for irrational mirror configurations. This
generality allows us to prove Theorem 3-5:

Proof of Theorem 3-5: For the duration of this proof, let M be a possibly irrational
legal mirror configuration. Suppose 〈q0, p0〉 has a hit sequence with period P . Then
ζi+P = ζi and θi+P = θi and λi+P = λi for i ≥ 1; so, we can apply Lemma 3-6
to construct a map f such that 〈q1+(i+1)P , p1+(i+1)P 〉 = f(q1+iP , p1+iP ) for i ≥ 0.
Moreover, by Theorem 3-1, pi+P = pi for i ≥ 1; hence, by (4-3), f induces a map h
such that x1+(i+1)P = h(x1+iP ) for i ≥ 0. Clearly ξ1+2iP = ξ1 for i ≥ 0. Therefore, by
Proposition 4-4, h ◦ h is a translation. If this translation is the identity, then the light
beam with initial state 〈q0, p0〉 has periodic state. If this translation is not the identity,
then, for N sufficiently large, x1+2NP 6∈ (0, λ1) = (0, λ1+2NP ), which is absurd. 2

Proposition 4-4 also allows us to use the rationality of M to reduce the problem of
understanding the dynamics of single light beam, which has a three-dimensional phase
space, to a much simpler one-dimensional dynamical problem. Suppose the light beam
with initial state 〈q0, p0〉 is trapped. Then it hits some mirror, say the mirror Mk,
infinitely many times. Furthermore, it hits that mirror infinitely many times at the
same exiting direction and parity. Therefore, we focus our attention on the sequence
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of offsets on the mirror Mk that the trapped light beam hits infinitely many times at
some fixed exiting direction and parity. These positions are specified by a subsequence
of 〈xi〉∞i=0. Proposition 4-4 tells us that a given offset in this subsequence is determined
from its predecessor by a translation that depends only on the intervening sequence of
mirror hits. Usign this information, we construct a piecewise translation T , defined on
part of (0, λ(Mk)). We prove more than a few lemmas concerning T , all of them means
to the end of proving the following powerful theorem.

Theorem 4-5. Let 〈q0, u0〉 be the initial state of a trapped light beam. Then some
element of Γ(u0) is degenerate or not aperiodic.

Before we can construct T , we need some preliminary results. Consider the fate the
light beam with initial augmented state 〈ζ(Mk)+xθ(Mk), p0, ξ0〉 where x ∈ (0, λ(Mk)).
In the next lemma, we show that, for all but finitely many values of x, the light beam
does not hit a mirror endpoint without first hitting the mirror Mk with exiting direction
and parity 〈p0, ξ0〉.

First, we need some more terminology. For all x in (0, λ(Mk)), we say that x returns
to 〈Mk, p0, ξ0〉 if, at some positive time t, there exists a y in (0, λ(Mk)) such that we
have

〈q, p, ξ〉(ζ(Mk) + xθ(Mk), p0, t, ξ0) = 〈ζ(Mk) + yθ(Mk), p0, ξ0〉.
We also abbreviate “returns to 〈Mk, p0, ξ0〉” with just “returns” when doing so causes
no ambiguity. Finally, we say that x escapes, hits a mirror, hits a mirror endpoint, is
trapped, etc., if the light beam with initial state 〈ζ(Mk) + xθ(Mk), p0〉 escapes, hits a
mirror, hits a mirror endpoint, is trapped, etc.

Lemma 4-6. Only finitely many offsets in (0, λ(Mk)) hit a mirror endpoint without
first returning.

Proof: Let z be a mirror endpoint position, v be a direction, and η be a parity. If
the light beam with initial augmented state 〈z − vδ(M)/2,−v, η〉 hits mirror Mk with
incoming direction and parity 〈−p0, ξ0〉, then let w be the first point on mirror Mk so
hit. Therefore, if −v does not point from z into the mirror of the endpoint z, then (4-2)
implies that w is the only offset on the mirror Mk where the light beam with initial
augmented state 〈w, p0, ξ0〉 hits z with incoming direction and parity 〈v, η〉 without first
returning. Moreover, if w exists, then v ∈ Γ(p0).

On the other hand, if −v points from z into the mirror of the endpoint z, then
it is impossible to hit z with incoming direction v. Therefore, since there are finitely
many mirror endpoints, finitely many directions in Γ(p0), and finitely many parities,
there are only finitely many offsets in (0, λ(Mk)) that hit a mirror endpoint without
first returning. 2

Set m − 1 equal to the number of offsets in (0, λ(Mk)) that hit a mirror endpoint
without first returning. Label these offsets α1,. . . , αm−1 such that αi−1 < αi for
i = 1, . . . , m − 1. Also, set α0 = 0 and αm = λ(Mk). Then, for i = 1, . . . ,m, define Ii

as (αi−1, αi). Therefore, all the elements in a given interval Ii either return or never hit
a mirror endpoint. We say that Ii is a returning interval if an element of Ii returns at
least once.

Starting with the next lemma, let us use the term “hit sequence” in several new
ways, using context to disambiguate its meaning. First, given an offset x on the mirror
Mk, let the hit sequence of x denote the hit sequence of the light beam with initial
state 〈ζ(Mk) + xθ(Mk), p0〉. Second, call the sequence of mirrors indices by which an
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offset returns the hit sequence by which it returns. Also, we say that two hit sequences
disagree if, for some k > 0, their kth elements are distinct and nonzero, recalling that
a zero in a hit sequence indicates escape or hitting a mirror endpoint. Conversely, we
say that two sequences of elements of {0, . . . , n} agree if the nonzero part of one of the
sequences contains the nonzero part of the other.

Lemma 4-7. If 1 ≤ i ≤ m and Ii is a returning interval, then all elements of Ii

return at least once, making their first return by the same hit sequence.

Proof: Suppose Ii contained an offset x that returned at least once, with its first
return occurring after N mirror hits. Then, by Corollary 3-10, x is contained in an
open interval J of offsets that return at least once by the same hit sequence that x first
returns. Choose the largest such J . Then J does not contain αi−1 or αi; hence, J is
contained in Ii.

Consider a boundary point y of J . The hit sequence of y, within the first N hits,
either terminates or disagrees with the hit sequence of x. By Corollary 3-10, a disagree-
ment or a termination due to escape implies that y is contained in an open set disjoint
from J . Hence, the hit sequence of y must terminate due to hitting a mirror endpoint.
Hence, y is a boundary point of Ii. Therefore, J = Ii. 2

Define the operator T as the map from the union of the returning intervals into
(0, λ(Mk)) with returning offsets mapped to the offsets at which they first return. Let
us state some basic properties of T . From time-reversed determinism, it immediately
follows that T is injective. Also, since offsets in a returning interval all return by the
same finite hit sequence, Proposition 4-4 applies. Hence, the whole interval, when it first
returns, is translated by the same amount. Therefore, T is a translation when restricted
to any one of the returning intervals; hence, the range of T is also a finite union of open
intervals. Therefore, if A is a subset of (0, λ(Mk)), then TA and T−1A are finite unions
of open intervals if A is. It follows by induction that T−idom(T ) and T iran(T ) are
finite unions of open intervals for all nonnegative integers i. Furthermore, T i+1 is a
translation when restricted to any open interval contained in T−idom(T ). Likewise,
T−i−1 is a translation when restricted to any open interval contained in T iran(T ).

Since T is a piecewise translation on a one-dimensional space, it is much easier to
investigate iterating T than to directly investigate repeated reflections of light beams.
We digress to point out that this approach is also profitable in the problem of polygonal
billiards, which is equivalent to our problem, save that the table edges (mirrors) touch
to form a closed polygon. Boldrighini et al.[2, p. 539] use the constraint of rationality
to prove ergodicity results about T , and translate them into ergodicity results about
the billiard dynamics. They actually prove a result similar to Theorem 4-5: a billiard,
provided it is initially inside a rational polygon and has a nondegenerate initial direction,
attains a set of positions that is dense in the interior of the polygon. Unfortunately, the
similarities end here. We cannot apply ergodic thoery to our problem because T is only
a partial function on (0, λ(Mk)). Fortunately, we can still prove plenty about T using
elementary methods.

Proposition 4-8. For all i ≥ 1, the boundary points of dom(T i) must eventually
hit endpoints.

Proof: If an offset x returns i times, then it is in dom(T i), which does not contain
any of its boundary points. If x escapes before returning i times, then, for some j < i,
we have x ∈ dom(T j), but T jx 6∈ dom(T ), as T jx is in one of the nonreturning intervals.
Hence, x 6∈ dom(T j+1); hence, x 6∈ dom(T i). 2
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Next we define F , a generalization of T . The domain of F is X, defined by

X =
n⋃

j=1

(0, λ(Mj))×
(
S1 − {±θ(Mj)}

)× {j}.

This space is just a representation of all the light-beam states lying on mirrors, except for
light-beam states with directions parallel to the mirror they lie on. The representation
is explicitly defined by the map φ, defined by

φ : X → C× S1 given by φ(x, u, j) = 〈ζ(Mj) + xθ(Mj), u〉.

For every w ∈ X, if the light beam with initial state φ(w) hits at least one mirror,
then define Fw as φ−1(z) where z = 〈q, p〉(φ(w), τ1(φ(w))). This definition makes the
position component of z the first point at which the light beam with initial state φ(w)
hits a mirror, and makes the direction component the direction at which the light beam
exits the mirror after that hit. By reversed-time determinism, F is injective. Also, F 2

preserves parity, whereas F reverses parity. Hence, for all x in dom(T ), the relationship
between F and T is

Tx = π1(F 2jx) where j = min{h ≥ 1 : F 2h(x, p0, k) ∈ (0, λ(Mk))× {p0} × {k}}.

We use F to prove a very useful property of T .

Lemma 4-9. Suppose that 1 ≤ i ≤ m and Ii is a nonreturning interval. Then all
offsets in Ii escape by the same hit sequence.

Proof: Let σ be a sequence of mirror indices, and let N be the length of σ. Then,
for any choice of σ, the set of offsets in Ii whose hit sequences agree with σ is open by
Corollary 3-10. By the same corollary, the set of offsets in Ii that escape after N hits
is open. Since Ii is nonreturning, none of its offsets hit mirror endpoints; hence, these
open sets partition Ii. By connectivity, exactly one of these open sets is nonempty.
Therefore, either all the offsets escape by the same hit sequence, or they are all trapped
by the same hit sequence.

Suppose the latter. Then, for all integers r and s such that r > s ≥ 0, the sets
F 2r(Ii × {p0} × {k}) and F 2s(Ii × {p0} × {k}) are disjoint, for if this is not the case,
then, since F is injective, Ii×{p0}× {k} intersects F 2(r−s)(Ii×{p0}× {k}), in contra-
diction with our assumption that no offsets in Ii return. Moreover, since F is injective,
F 2r+1(Ii × {v} × {k}) and F 2s+1(Ii × {v} × {k}) are also disjoint.

By Corollary 4-3, we may choose a mirror Ml, a direction v′ ∈ Γ(p0), and a parity
η′ such that the offsets in Ii all hit the mirror Ml infinitely many times with exiting
direction and parity 〈v′, η′〉. Therefore, there exist a j0 ∈ {0, 1} and an infinite increasing
sequence of natural numbers 〈jh〉∞h=1 such that

F j0+2jh(Ii × {p0} × {k}) ∈ (0, λ(Ml))× {v′} × {l}

for h > 0. By Proposition 4-4, π1 ◦ F 2jh translates π1(F j0(Ii × {p0} × {k})) for each
h > 0. The unions of all these translates are contained in (0, λ(Ml)); hence, some of
these translates must intersect, contrary to what we have already shown. 2

Let J be an open subinterval of (0, λ(Mk)). We say that an offset in J returns to
J if it returns to 〈Mk, p0, ξ0〉 and one of the offsets that it returns to is in J . Let TJ
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map every offset in J that returns to J to the first offset at which it returns. Leave
TJ undefined for all other offsets. By time-reversed determinism, TJ is injective. Also,
the proof of Lemma 4-6 is easily modified to show that only finitely many offsets in J
hit endpoints before returning to J . Also, by injectivity of T , at most two offsets in J
return to 〈Mk, p0, ξ0〉 at a boundary point of J before returning to J . If we take the
complement, in J , of the finitely many points that, before returning to J , hit mirror
endpoints or return to a boundary point of J , then we get a finite union of subintervals
of J . Denote these intervals by J1, . . . , Jl. We also refer to them as the J-classes.
Therefore, all offsets in J-classes, unless they return to J , do not hit a mirror endpoint
or return at a boundary point of J .

The next lemma is the analogue of Lemma 4-7 for TJ .

Lemma 4-10. Let J be an open subinterval of (0, λ(Mk)), and Ji be a J-class. If
Ji contains an offset that returns to J , then all offsets in Ji return to J , making their
first return by the same hit sequence.

Proof: Let Ji be a J-class. Suppose Ji contains an offset x that returns to J at least
once, with its first return occurring after N mirror hits. Then, by Corollary 3-10, x is
contained in an open interval K of offsets that return to 〈Mk, p0, ξ0〉 after making the
same N mirror hits, in the same order, as x. There exists some positive integer h such
that Thx is the first offset in J to which x returns. Since Th is a translation on K, we
may shrink K so that ThK ⊆ J and x ∈ K. Furthermore, we may then enlarge K to be
the largest open interval of offsets that contains x and contains only offsets that return
to J by the same N -mirror hit sequence as x. Then K ⊆ Ji, for K does not contain the
boundary points of Ji.

Consider a boundary point y of K. If y ∈ Ji, then y does not hit a mirror endpoint
or a boundary point of J before returning to J . Thus, if y ∈ Ji, then one of the following
must occur:

1. The hit sequence of y terminates within the first N hits.
2. The hit sequence of y has a disagreement with the hit sequence of x within the
first N hits.

3. The hit sequence of y is identical with that of x for the first N hits, but Thy 6∈ J .
If there is a disagreement or a termination due to escape, then, by Corollary 3-10,

y is contained in an open set disjoint from K. Hence, the hit sequence of y can only
terminate due to hitting a mirror endpoint. But such a termination implies y is a
boundary point of Ji. Therefore, Possibilities 1 and 2 cannot occur if y ∈ Ji. Suppose
Possibility 3 occurs. Then Th is a translation on a neighborhood of y as well as a
translation on K. Since K must intersect this neighborhood, Th identically translates
y and all offsets in K; hence, Thy is a boundary point of ThK. But Thy 6∈ J and
ThK ⊆ J ; hence, Thy is a boundary point of J , which is absurd because y is in a J-
class. Therefore, none of Possibilities 1, 2, or 3 occur; hence, y 6∈ Ji; hence, K = Ji. 2

The analogue of Lemma 4-9 for TJ is also true.

Lemma 4-11. Let J be an open subinterval of (0, λ(Mk)). Suppose that Ji is a
J-class that contains no offsets that return to J . Then all offsets in Ji escape by the
same hit sequence.

Proof: Suppose that no offset in Ji escapes. No offset in Ji hits a mirror endpoint
either; hence, by Lemma 4-9, Ji is contained in a returning interval Ij . Therefore,
Ji ⊆ domT ; hence, if an offset in TJi hits a mirror endpoint or escapes, then so does
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its preimage under T . Therefore, no offset in TJi hits a mirror endpoint or escapes.
Again, by Lemma 4-9, TJi is contained in a returning interval. In general, if h is a
positive integer, ThJi is contained in a returning interval, and no offset of ThJi hits a
mirror endpoint or escapes, then Th+1Ji is contained in a returning interval, and no
offset of Th+1Ji hits a mirror endpoint or escapes. By induction, ThJi is contained in a
returning interval for all h ≥ 0; hence, Th is a translation on Ji for all h ≥ 0.

Let r and s be integers such that 0 ≤ r < s. Then T rJi and T sJi must be disjoint,
for otherwise T s−rJi intersects Ji, which is contained in J ; this situation is absurd,
for no offsets in Ji return to J . However, the intervals in the sequence 〈ThJi〉∞h=0 all
have the same length, yet they are contained in (0, λ(Mk)); hence, they are not pairwise
disjoint; hence, our hypothesis, that no point in Ji escapes, is false. Furthermore, by
the connectedness argument used in the proof of Lemma 4-9, all points in Ji escape by
the same hit sequence. 2

Lemma 4-10 and Lemma 4-11 immediately imply the following proposition.

Proposition 4-12. Let J be an open subinterval of (0, λ(Mk)). Each offset in J
returns to J , escapes, or hits a mirror endpoint.

Proposition 4-13. Suppose x is a trapped offset in (0, λ(Mk)). Then x returns to
every neighborhood of x.

Proof: If J is a neighborhood of x, then J contains (x − 1/N, x + 1/N) for some
N > 0. By Proposition 4-12, x returns to [x− 1/(N + 1), x + 1/(N + 1)]. 2

Using T , we define the related operators T+ and T−:

T+x = lim
y↘x

Ty, and T−x = lim
y↗x

Ty.

The domains of these operators are exactly those offsets x for which the respective limits
are well defined. Since T is an injective piecewise translation, so are T+ and T−. We say
that an offset x is trapped under T+, respectively, T−, T−1

+ , T−1
− , if TN

+ x, respectively,
TN
− x, T−N

+ x, T−N
− x, is defined for all positive integers N . Likewise, we say an offset x

returns to a set E under T+, respectively, T−, T−1
+ , T−1

− , if x ∈ E and there is a positive
integer N such that TN

+ x, respectively, TN
− x, T−N

+ x, T−N
− x, is in E.

The next lemma is an analogue of Proposition 4-13.

Lemma 4-14. Let x ∈ [0, λ(Mk)) and ε > 0. If x is trapped under T+, then x
returns to [x, x + ε) under T+. If x is trapped under T−, then x returns to (x − ε, x]
under T−.

Proof: Suppose x is trapped under T+. Set J = (x, x + ε). Let J1 be the leftmost
J-class of J . If J1 does not return to J then, by Lemma 4-11, there is a positive integer
h such that Th not defined on any element of J1. However, inf J1 = x; hence, for all
positive integers h, there is an ε′ > 0 such (x, x + ε′) is in the domain of Th. Therefore,
by Lemma 4-10, all offsets in J1 return to J by the same hit sequence. Hence, ThJ1 ⊂ J
for some h > 0; hence, Th

+x ∈ J ∪ {x}. The rest of the lemma follows by symmetry. 2

Proposition 4-15. If x is a trapped offset in (0, λ(Mk)), then x returns to both
(x− ε, x] and [x, x + ε) for all ε > 0.

Proof: Suppose T i+1x is undefined for some i ≥ 0. Choose i to be as small as pos-
sible. Then T ix is defined. Since T ix does not hit a mirror endpoint, T ix is either in a
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returning interval or in a nonreturning interval. By Lemma 4-9, T ix is not in a nonre-
turning interval, hence, T i+1x is defined. Therefore, T ix is defined for all nonnegative
integers i; hence, x is trapped under T+ and T−. 2

The main advantage of T+ and T− over T is their symmetry with respect to time,
as stated below.

Lemma 4-16. Suppose x ∈ [0, λ(Mk)). Then x is trapped under T+ if and only if
it is trapped under T−1

+ . Likewise, if x ∈ (0, λ(Mk)], then x is trapped under T− if and
only if it is trapped under T−1

− .

Proof: By symmetry, we need only prove the lemma’s claim about T+. We show
that if x is trapped under T+, then it is trapped under T−1

+ . The converse follows, again
by symmetry.

Suppose x is trapped under T+, but not under T−1
+ . Then there exists an N > 0

such that T−N
+ x is undefined; hence, there exists an ε > 0 such that T−N

+ is undefined
on [x, x + ε), as T−N is a local translation on its domain. By Lemma 4-14, there is a
positive integer h such that Th

+x ∈ [x, x + ε). Since Th
+x is trapped under T+, there is

also a positive integer h′ such that Th+h′
+ x ∈ [Th

+x, x + ε) ⊆ [x, x + ε). In general, given
a positive integer i such that T i

+x ∈ [x, x+ ε), there is a positive integer j > i such that
T j

+x ∈ [x, x + ε). Therefore, we may assume h > N . Hence, T−N
+ is defined on Th

+x;
hence, Th

+x 6∈ [x, x + ε), which is absurd. 2

We just need one more lemma before we can prove Theorem 4-5.

Lemma 4-17. Suppose p0 is aperiodic and nondegenerate. Then

0 = min{x ∈ [0, λ(Mk)) : x trapped under T+}
provided this set is not empty. Likewise,

λ(Mk) = max{x ∈ (0, λ(Mk)] : x trapped under T−}
provdided this set is not empty.

Proof: We prove the first of these two statements; the proof of the second follows
by symmetry.

Set
A = {x ∈ [0, λ(Mk)) : x trapped under T+}.

Set y = inf A. Suppose there exists a positive integer N such that TN
+ y is undefined.

Then there exists an ε > 0 such that TN is undefined on (y, y + ε); hence, y + ε is a
lower bound for A, a contradiction. Hence, y is trapped under T+. Hence, it suffice to
prove y = 0.

Suppose y > 0. If y is trapped, then y returns to (y − ε, y] for every ε > 0. Since p0

is aperiodic, y cannot return to y, for if TN
+ y = y for some N > 0, then there exists an

ε′ > 0 such that TNz = z for all z ∈ (y, y + ε′), in contradiction with the aperiodicity of
p0. Therefore, y returns to (y − ε, y). Thus, if y is trapped, then there exists an offset
z such that z < y and z is trapped. However, if z is trapped, then it is trapped under
T+, in contradiction with our definition of y. Therefore, y is trapped under T+, but not
trapped.

Since y is not trapped, there exists some N ≥ 0 such that y ∈ domTN is defined
but TNy is not in a returning interval. Since y ∈ domTN+1

+ , we cannot have TNy in a
nonreturning interval. Therefore, y hits a mirror endpoint.
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Consider the behavior of y in reversed time. Since y is trapped under T+, it is
trapped under T−1

+ . Is y trapped in reversed time? Suppose not. Then y eventually
hits a mirror endpoint in reversed time. Since y also hits a mirror endpoint in forward
time, the light-beam state 〈ζ(Mk) + yθ(Mk), p0〉 is a path from a mirror endpoint to
a mirror endpoint, contrary to our hypothesis that p0 is nondegenerate. Therefore, y is
trapped in reversed time.

By symmetry, Proposition 4-15 is true for reversed time. Therefore, in reversed time,
y returns to (y− ε, y] for all ε > 0. Since y does not return to y in forward time, it does
not return to y in reversed time; hence, y returns to (y − ε, y) in reversed time. The
preimages of y under T are trapped under T+ because y is. Therefore, there exists an
offset z such that z < y and z is trapped under T+, in contradiction with our definition
of y. Therefore, y = 0. 2

Finally, with all our knowledge about T and its cousins, we prove Theorem 4-5.
Proof of Theorem 4-5: Let 〈q0, u0〉 be the initial state of a trapped light beam. Let

i be the index of the first mirror hit by 〈q0, u0〉, and let u be the corresponding ex-
iting direction. Suppose that all elements of Γ(u0) are aperiodic, and that none are
degenerate. We derive a contradiction.

First, we define the light-beam closure operator. Given a direction w and a mirror
index h, let L(w, h) denote the set of all ordered pairs 〈w′, h′〉 for which w′ is a direction,
h′ is a mirror index, and there is a trapped light beam, with initial direction w and initial
position on g(Mh), that hits the mirror Mh′ with exiting velocity w′. Given a set F
contained in S1×{1, . . . , n} and an integer h ≥ 0, set L0F = F and Lh+1F = L(LhF ).
Define the light-beam closure of F to be

⋃∞
h=0 LhF , and denote it by LωF .

Given F ⊆ S1×{1, . . . , n}, define the endpoint hull of F , which we denote by EF , to
be the convex hull of the set of endpoints of mirrors with indices in π2(F ). Since there are
only finitely many mirror endpoints, we may choose 〈v, j〉 ∈ Lω{〈u, i〉} such that ζ(Mj)
or ζ(Mj) + λ(Mj)θ(Mj) is on the boundary of ELω{〈u, i〉}. Moreover, a trapped light
beam hits at least two noncolinear mirrors; hence, ELω{〈u, i〉} contains at least three
noncolinear points; hence, we may assume j 6= i. Since 〈v, j〉 ∈ Lω{〈v, j〉} ⊆ Lω{〈u, i〉},
the boundary of ELω{〈v, j〉} contains ζ(Mj) or ζ(Mj) + λ(Mj)θ(Mj). We may assume
ζ(Mj) is on the boundary of ELω{〈v, j〉}, for the argument for the other case can be
handled symmetrically.

To derive a contradiction, and thereby prove the theorem, we show that ζ(Mj) is in
the interior of ELω{〈v, j〉}. First, define a map T ′ that is the same as T except that
〈v, j, 1〉 replaces 〈p0, k, ξ0〉. Likewise define T ′+ and T ′−. All that we have proved of T ,
T+, and T− is clearly also true of T ′, T ′+, and T ′−, respectively. In particular, since
〈v, j〉 ∈ Lω{〈u, i〉}−{〈u, i〉}, there exists an offset y ∈ (0, λ(Mj)) such that y is trapped,
in the sense that the light beam with initial state 〈ζ(Mj) + yθ(Mj), v〉 is trapped, and
hence trapped under T ′+. It is easily checked that π1(Lω{〈u, i〉}) ⊆ Γ(u) = Γ(u0); hence,
v ∈ Γ(u0). Hence, v is aperiodic and nondegenerate. Therefore, Lemma 4-17 implies 0
is the minimum offset trapped by T ′+.

Let us agree to abbreviate δ(M) by δ throughout this proof, for here we don’t
concern ourselves with mirror configurations other than M . Consider the light beam
with initial state 〈ζ(Mj) + vδ/2, v〉. If it escapes, then, by Theorem 3-9, it has an open
neighborhood of initial states for which the corresponding light beams escape by the
same hit sequence. For some ε > 0, all z ∈ [0, ε) are such that 〈ζ(Mj)+zθ(Mj)+vδ/2, v〉
is contained in this neighborhood. By definition of δ, the light beam with initial state
〈ζ(Mj) + zθ(Mj) + vδ/2, v〉 has the same hit sequence as the light beam with initial
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state 〈ζ(Mj) + zθ(Mj), v〉. Therefore, (T ′)N is undefined on (0, ε) for some positive
integer N . This situation is absurd, for 0 is trapped under T ′+.

Since it does not escape, the light beam with initial state 〈ζ(Mj)+ vδ/2, v〉 is either
trapped or hits a mirror endpoint. If the latter, then v is degenerate. Therefore, the
light beam with initial state 〈ζ(Mj) + vδ/2, v〉 is trapped. Let k be the index of the
first mirror hit by this light beam, and let x, p0, and ξ0 be the offset, exiting direction,
and exiting parity, respectively, of this first hit. Note that p0 = θ(Mk)2v.

Let us show that 〈p0, k〉 ∈ Lω{〈v, j〉}. Since 0 is trapped under T ′+, it must return,
under T ′+, to [0, ε) for all ε > 0. Furthermore, since v is aperiodic, v must return under
T ′+ to (0, ε) for all ε > 0; hence, there exist arbitrarily small positive x such that x is
trapped under T ′+. Furthermore, (T ′)hT ′+0 is defined for all nonnegative integers h, for
otherwise T ′+0 hits a mirror endpoint, in contradiction with the nondegeneracy of v.
Therefore, we may choose h > 0 such that (T ′+)h0 is small enough that the light beams
with initial states

〈ζ(Mj) + vδ/2, v〉 and 〈ζ(Mj) + (T ′h+ 0)θ(Mj) + vδ/2, v〉

hit the same mirror first. Since (T ′+)h0 is defined for all h > 0, the light beam with
initial state 〈ζ(Mj)+ (T ′h+ 0)θ(Mj), v〉 is trapped; hence, 〈p0, k〉 ∈ Lω{〈v, j〉} as desired.

Since the light beam with initial state 〈ζ(Mj) + vδ/2, v〉 is trapped, x must be
trapped under T where as usual T is defined with respect to 〈Mk, p0, ξ0〉. Moreover, p0

is aperiodic because p0 ∈ Γ(u0); hence, x returns to both (x − ε, x) and (x, x + ε) for
all ε > 0. Therefore, for any σ ∈ {±1}, there exist arbitrarily small positive ε such that
x returns at x + σε. By definition of T , the light beam with initial augmented state
〈ζ(Mk) + xθ(Mk), p0, ξ0〉 hits 〈ζ(Mk) + (x + σε)θ(Mk), p0, ξ0〉 in finite time.

Let us abbreviate ζ(Mk)+xθ(Mk) by κ, and ζ(Mk)+(x+σε)θ(Mk) by α. Figure 4-1
illustrates κ, α, and several symbols we will define shortly. Since p0 = θ(Mk)2v, the light
beam with initial state 〈α, p0〉 must exit the mirror Mk with direction −v in reversed
time. Let l be the index of the first mirror this light beam hits in reversed time. Then
the mirror Ml must be hit, in forward time, by the light beam with initial state 〈κ, p0〉
with exiting direction v. Therefore, 〈v, l〉 ∈ Lω{〈k, p0〉} ⊂ Lω{〈v, j〉}. Therefore, by
convexity, g(Mj), g(Mk), and g(Ml) are contained in ELω{〈v, j〉}. Furthermore, any
points on lines segments with both segment endpoints in g(Mj) ∪ g(Mk) ∪ g(Ml) must
also be in ELω{〈v, j〉}.

Let α′ be the first point on the mirror Ml hit by 〈α, p0〉 in reversed time. Set
τ = |α − α′|. Then, for all τ ′ ∈ [0, τ ], we have α − τ ′v ∈ ELω{〈v, j〉}; hence, it suffices
to show that, for some τ ′ ∈ [0, τ ], the point ζ(Mj) is in the interior of the convex hull
of the three points ζ(Mj) + λ(Mj)θ(Mj), α, and α− τ ′v.

Set t = |ζ(Mj)−κ| and β = ζ(Mj)+σεθ(Mk). Then κ = ζ(Mj)+ tv and α = β + tv.
Also, choose σ as follows:

σ = −sign
(

Im(θ(Mk)v)
Im(θ(Mj)v)

)
.

Lemma 4-18. There exist a unique r ∈ R and a unique s ∈ R such that

ζ(Mj)− rθ(Mj) = sα + (1− s)β.

Moreover, r > 0.
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Ml

ρ

γ

β
ζ(Mj)

Mj

ζ(Mj) + θ(Mj)λ(Mj)

v v

p0 p0

ακ Mk ζ(Mk) + θ(Mk)λ(Mk)ζ(Mk)

Figure 4-1. Important points and directions used in the proof of Theorem 4-5. The
interior of the convex hull of the points α, ρ, and ζ(Mj) + λ(Mj)θ(Mj) contains ζ(Mj).

25



Proof: The above equation is equivalent to ζ(Mj) − rθ(Mj) − β = s(α − β) = stv.
And it is equivalent to

st = v(ζ(Mj)− rθ(Mj)− β) = −v(rθ(Mj) + σεθ(Mk)).

Since the rightmost expression must have zero imaginary part, there is exactly one
solution for r, and it is positive:

r = −σε
Im(θ(Mk)v)
Im(θ(Mj)v)

= ε

∣∣∣∣
Im(θ(Mk)v)
Im(θ(Mj)v)

∣∣∣∣ .

Note that Im(θ(Mj)v) and Im(θ(Mk)v) are nonzero because v is not parallel to the
mirror Mj or the mirror Mk.

Given this solution for r, we have

st = vεσ

(
θ(Mj)

Im(θ(Mk)v)
Im(θ(Mj)v)

− θ(Mk)
)

.

It is equivalent to

st(θ(Mj)v − θ(Mj)v) = εσ
(
θ(Mj)v(θ(Mk)v − θ(Mk)v)− θ(Mk)v(θ(Mj)v − θ(Mj)v)

)

= εσ(θ(Mj)θ(Mk) + θ(Mk)θ(Mj)).

Therefore, s has a unique real solution:

s =
σε

t

Re(θ(Mj)θ(Mk))
Im(θ(Mj)v)

. 2

Set γ = ζ(Mj)− rθ(Mj) = sα + (1− s)β and ρ = γ − vδ/2 and τ ′ = t(1− s) + δ/2.
Then

ρ = sα + (1− s)β − vδ/2 = β + stv − vδ/2
= α + (t(s− 1)− δ/2) v = α− τ ′v. (4-4)

By shrinking ε if necessary, we may assume s < 1; hence, τ ′ > 0. Moreover, τ ′ < τ , but
this inequality takes a little more work to show.

By the definitions of k and κ, the closed line segment between ζ(Mj) and κ does not
intersect the closure of any mirrors other than g(Mj) and g(Mk). Therefore, we may
choose ε to be small enough that the closed line segment between β and α, which is just
a translation of the former line segment by σεθ(Mk), does not intersect the closure of
any mirrors, except possibly g(Mj) or g(Mk). By Lemma 4-18, the line determined by α
and β intersects the line determined by the mirror Mj exactly once, at ζ(Mj)− rθ(Mj),
which is not in g(Mj) because r > 0. Therefore, the closed line segment between β and
α intersects only the closure of the mirror Mk. (Though not required for our argument,
but required to justify Figure 4-1, we note that l 6= j, for the ray from α that goes
through β hits g(Ml) but not g(Mj).)

By shrinking ε if necessary, we may assume

|β − ζ(Mj)| = ε < δ/2 and |γ − ζ(Mj)| = r < δ/2.
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Therefore, by definition of δ and convexity of disks, the closed line segment between β
and γ does not intersect the closure of any mirror, except possibly g(Mj). Moreover,
this line segment lies on the line determined by α and β; hence, this line segment does
not intersect g(Mj). Set ρ = γ − vδ/2. Then the closed line segment between γ and ρ
lies on the line determined by α and β, for α − β = tv. Hence, this line segment does
not intersect g(Mj). Furthermore, we have

|ρ− ζ(Mj)| ≤ |ρ− γ|+ |γ − ζ(Mj)| < δ.

Hence, by definition of δ and convexity of disks, the closed line segment between γ and
ρ does not intersect the closure of any mirror other than g(Mj).

The closed line segment between α and ρ is contained in the union of the three closed
line segments with respective endpoints α, β and β, γ and γ, ρ. Therefore, the closed
line segment between α and ρ intersects the closure of at most one mirror, namely the
mirror Mk. Since v is not parallel to the mirror Mk, this intersection occurs at exactly
one point, namely α. Therefore, the closed line segment between α and ρ is the initial
part of the trajectory of a light beam with initial position α and initial direction ±v.
Moreover, the initial direction is −v, as ρ = α− τ ′v and τ ′ > 0.

Since the initial direction is −v, the light beam with initial state 〈α, p0〉 hits ρ in
reversed time before it hits the mirror Ml in reversed time; hence, τ ′ < τ. Therefore,
it suffices to show that ζ(Mj) is in the interior of the convex hull of the points α, ρ,
and ζ(Mj)+λ(Mj)θ(Mj), which is equivalent to finding three numbers A,B, C ∈ (0, 1)
such that

A + B + C = 1 and ζ(Mj) = Aα + Bρ + C(ζ(Mj) + λ(Mj)θ(Mj)).

To find such A, B, and C, first note that (4-4) implies

γ = ρ + δv/2 = α + t(s− 1)v and ρ = α + (t(s− 1)− δ/2)v.

Combining these equations, we get

γ =
δ/2

t(1− s) + δ/2
α +

t(1− s)
t(1− s) + δ/2

ρ. (4-5)

Also, since γ = ζ(Mj)− rθ(Mj), we have

ζ(Mj) =
r

λ(Mj) + r
(ζ(Mj) + λ(Mj)θ(Mj)) +

λ(Mj)
λ(Mj) + r

γ. (4-6)

Combining (4-5) and (4-6), we get

ζ(Mj) =
r

λ(Mj) + r
(ζ(Mj) + λ(Mj)θ(Mj)) +

λ(Mj)
λ(Mj) + r

δ/2
t(1− s) + δ/2

α

+
λ(Mj)

λ(Mj) + r

t(1− s)
t(1− s) + δ/2

ρ.

Take A, B, and C to be the respective coefficients for α, ρ, and ζ(Mj) + λ(Mj)θ(Mj)
in the above equation. 2
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Theorem 4-19. Let A be the set of directions p0 for which there exists a complex
number q0 such that the light beam with initial state 〈q0, p0〉 is trapped. Then A is
countable.

Proof: Let 〈q0, p0〉 be a light-beam state for which the light beam with initial state
equal 〈q0, p0〉 is trapped. Then, by Theorem 4-5, some element of Γ(p0) is not aperiodic
or is degenerate. Suppose v ∈ Γ(p0) and v is not aperiodic. Then, by Theorem 4-2,
Γ(v) = Γ(p0); whence, p0 ∈ Γ(v). By Corollary 3-2, the union of all Γ(w) such that w
is not aperiodic is countable, as each Γ(w) is finite. Therefore, there are only countably
many possibilities for p0.

Suppose all of elements Γ(p0) are aperiodic. Then we may choose a degenerate
direction v in Γ(p0). There are 4n2 ordered pairs of mirror endpoints, and, by Theo-
rem 3-4, only countably many directions allow a path from one given mirror endpoint
to another, not necessarily distinct, given mirror endpoint. Therefore, there are only
countably many degenerate directions. By Theorem 4-2, Γ(v) = Γ(p0); hence, the set
of initial directions p0 such that Γ(p0) contains a degenerate element is the union of the
finite sets Γ(w) for which w is degenerate. This union is countable. 2

Corollary 4-20. For any given rational mirror configuration on n mirrors H and
any initial position q0, there are only countably many directions p0 such that the light
beam with initial state 〈q0, p0〉 does not escape.

Proof: First, there are only countably many initial directions for which there is a
trapped light beam, for any initial position. Second, there are only countably many
directions that allow a path from q0 to a given mirror endpoint, and there are finitely
many mirror endpoints; hence, there are only countably many initial directions for which
a light beam with initial position q0 hits a mirror endpoint. Finally, if q0 lies on a mirror
or a mirror endpoint, then there are at most two directions that point from q0 into the
mirror. 2
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