Day Readings Topics Photos Audio More readings HW due Revision due 1 1 the real line; monotone sequences zip mp3 zip (binomial theorem) 5 11 2 2.1-4 inequalities and estimates zip mp3 5 11 3 2.5-6 approximations and "for n large" zip mp3 7 12 4 3.1,2,5 proving limits from the definition zip mp3 7 12 5 3.3,4 infinite limits and an zip mp3 9 16 6 4 error term analysis zip mp3 9 16 7 5.1 limit laws zip mp3 zip (-∞ and ∞·∞ limits) 13 20 8 5.2-4 comparison & location theorems; subsequences zip mp3 jpeg (subsequence theorem) 13 20 9 6.1-3 completeness: Bolzano-Weierstrass zip mp3 jpeg (summary) 13 20 10 6.4 Cauchy completeness zip mp3 16 22 11 6.4 proving sequences Cauchy zip mp3 zip (strategies) xlsx (a sequence) zip (more examples) 12 7 infinite series zip mp3 13 7, 8 ratio, root tests; power series zip mp3 zip (solutions 1-4) 19 27 14 midterm exam (days 1-5) 15 9 real functions: basic properties zip mp3 19 27 16 6.5, 10 properties pointwise, local, and global zip mp3 19 27 17 11 continuity zip mp3 23 29 18 11; 12.1-2 continuity; IVT zip mp3 23 29 19 12.3-4 Inverse Function Theorem zip mp3 20 13.1-3 Extreme Value Theorem zip mp3 23 29 21 13.5 Uniform Continuity zip mp3 26 22 14 differentiability zip mp3 zip (product and inverse rules) 26 23 14,15 Mean Value Theorem zip mp3 26 24 17 Taylor's Theorem zip mp3 zip (proof of Taylor's Thm.) 29 25 18 Riemann Integrability zip mp3 zip (solutions 5-10) zip (integrability proofs) 29 26 18-19 Riemann integrals, part I zip mp3 zip (interval additon integrability) 27 19 Riemann integrals, part II zip mp3 zip (subinterval integrability) zip (solutions 13-16, 21-23) 29 28 20 Fundamental Theorems of Calculus zip mp3 zip (more integral properties) 29 22 Uniform convergence and power series zip mp3 zip (solutions 17-20, 24-27) Final Exam: Dec. 12, 3:30-6:30

Old exams:
Fall 2012: 1 2 Final
Fall 2013: 1 2 Final
Fall 2014: Final
Fall 2015: 1 2 Final