Syllabus (includes schedule).
Office hours: MTWR1:45--3:15, LBV 321; email: david.milovich@tamiu.edu
Textbook.
Fall 2016 course materials (includes old exams).
SI sessions: M1:30--2:30 and W2:30--3:30, CWT 205; SI email: jacinto_delacruzh1@dusty.tamiu.edu

Day Readings Topics Photos Audio Other Day's HW
due on Day
Tested
on Day
1 2.1 plane vectors zip 7 15
2 2.1 plane vectors zip jpeg (force balance solution) 7 15
3 2.1-2 unit vectors; 3D sketches zip 7 15
4 2.2 more on space vectors zip 7 15
5 2.3 dot products zip 11 15
6 2.3 projections zip 11 15
7 2.4 cross products zip mp3 parallelepiped 11 15
8 2.5 equations for lines zip mp3 11 15
9 2.5 equations for planes zip mp3 18 25
10 2.6 quadric surfaces zip mp3 18 25
11 2.7 cylindrical coordinates zip mp3 18 25
12 2.7 spherical coordinates zip mp3 Greek alphabet 18 25
13 3.1,2 space curves zip mp3 zip (solutions 1--8) 18 25
14 3.2,3 unit tangent; arc length zip mp3 21 25
16 3.3 curvature zip mp3 21 25
17 3.3 unit normal;
osculating circle
zip mp3 helix's osculating circle
zip (parabola's osculating circles)
zip (curvature proofs)
21 25
18 3.4 acceleration zip mp3 jpeg (another osculating circle) 21 25
19 4.1 level curves; vertical traces zip mp3 28 36
20 4.2 discontinuity zip mp3 28 36
21 4.2 continuity zip mp3 xlsx (f(x,y) table) 28 36
22 4.3 partial derivatives zip mp3 pdf (solutions 9-18) 28 36
23 4.4 differentiability zip mp3 tangent plane
counterexamples
28 36
24 4.5 chain rule zip mp3 36
26 4.5 chain rule zip mp3 32 36
27 4.6 directional derivatives zip mp3 32 36
28 4.6 gradients zip mp3 xlsx (gradient ascent) 32 36
29 4.7 local extrema zip mp3 homework hint 32 36
30 4.8 Lagrange multipliers zip mp3 39 53
31 5.1 numerical double integrals zip mp3 xlsx (midpoint rule examples) 39 53
32 5.1 rectangular double integrals zip mp3 39 53
33 5.2 non-rectangular double integrals zip mp3 39 53
34 5.2 non-rectangular double integrals zip mp3 pdf (solutions 19-29) 39 53
35 5.3 polar double integrals zip mp3 43 53
37 5.4 triple integrals over boxes zip mp3 43 53
38 5.4 general iterated triple integrals zip mp3 43 53
39 5.5 cylindrical triple integrals zip mp3 43 53
40 5.5 spherical triple integrals zip mp3 special angles 43 53
41 5.6 center of mass; moment of inertia zip mp3 pdf (moment of inertia for any axis) 48 53
42 5.7 2D coordinate transformations zip mp3 48 53
43 5.7 3D coordinate transformations zip mp3 zip (solutions 30-34) 48 53
44 6.1 2D vector fields zip mp3 48 53
45 6.1 3D vector fields zip mp3 SageMathCloud (free)
vector field plotting commands
48 53
46 6.2 scalar line integrals zip mp3 55
47 6.2 vector line integrals zip mp3 55
48 6.3 Fund. Thm. of line integrals zip mp3
49 6.3 Potential functions zip mp3 zip (solutions 35-40) 55
50 6.4 Green's Theorem zip mp3 pdf (topological terminology) 55
51 6.4 Green's Theorem zip mp3 59
52 6.5 Divergence and curl zip mp3 59
54 6.6 Parametric surfaces zip mp3 Mathematically defined Easter eggs 59
55 6.6 flux integrals zip mp3 flux visualization 59
56 6.7 Stokes' Theorem zip mp3 59
57 6.8 Divergence Theorem zip mp3
58 review zip zip (solutions 46-50)
59 review zip zip (solutions 51-56)
Final Exam: May 16, 12:30--3:25