Syllabus (includes schedule).
Office hours: MW 1--3, TR 1--5 at LBV 321; email: david.milovich@tamiu.edu

Day Readings Topics Photos Audio Other HW
1 1A introduction; Rn, Cn zip mp3 1A #10,11,16
2 1B,C vector spaces; subspaces zip mp3 sums (jpeg) 1B #2; 1C #12,20
3 2A span; linear independence zip mp3 2A #10,15
4 2B bases zip mp3
(incomplete)
2B #7
5 2C dimension zip mp3 1.43 solves 2C #17 2C #13,14
6 3A linear transformations zip mp3 summary (txt) txt
7 3B null space and range zip mp3 3B #6,24
8 3C matrices zip mp3 3C #1,2
9 3D invertibility zip mp3 3D #4 (pdf) 3D #6,7
10 3D invertibility zip mp3 left, right inverses (pdf) 3D #8,13
11 3E product and quotient spaces zip mp3
12 3F dual spaces zip mp3 3F #32
13 5A eigenvalues, eigenvectors zip mp3 5A #10
14 5B existence of eigenvalues and
upper triangular representations
zip mp3
15 5C eigenspaces; diagonalization zip mp3 5C #16
16 6A inner product spaces zip mp3 6A #5,20
17 6B orthonormal bases zip mp3 6B #14 (jpeg) 6B #6
19 6C orthogonal complements zip mp3 6C #4,8
20 7A normal and self-adjoint operators zip mp3 7A #6,19
21 7B the Spectral Theorem zip mp3 7B #8,9
22 7C positive and isometric operators zip mp3 7C #4,7
23 7D polar and singular value decompositions zip mp3
24 8A generalized eigenvectors zip mp3
(incomplete)
Ch. 7 summary (pdf)
25 8A,B nilpotent operators; a decomposition zip mp3
(incomplete)
8B #6
26 8B,C operator decomposition; Cayley's Theorem zip mp3
28 8C,D Jordan form; minimal and characteristic polynomials zip mp3
29 10 trace and determinant zip