Syllabus
Office hours: MW 2--5, TR 2--3 at LBV 321; email: david.milovich@tamiu.edu
Textbook
Old Exams
Fall 2017 course materials

 Day Readings Topics Photos Other HW HW dueon Day Testedon Day 1 2.1 plane vectors zip pdf 7 17 2 2.2 space vectors zip pdf 7 17 3 2.3 dot product zip pdf 7 17 4 2.3 projections zip pdf 7 17 5 2.4 cross product zip about inverse sine (pdf) pdf 11 17 6 2.4 areas, volumes zip parallelepiped (scroll down) pdf 11 17 7 2.5 lines zip pdf 11 17 8 2.5 planes zip pdf 11 17 9 2.5 distances to lines, planes zip solutions 1--4 (pdf) pdf 15 28 10 2.7 cylindrical coordinates zip θ formulas (pdf) pdf 15 28 11 2.7 spherical coordinates zip Greek alphabet pdf 15 28 12 3.1, 3.2 space curves; unit tangent vector zip interactive plots WolframAlpha plot pdf 15 28 13 3.3 arc length zip solutions 5--8 (pdf) TI calculator steps (pdf) WolframAlpha arc length pdf 21 28 14 3.3, 3.4 acceleration; unit normal vector zip Q&A 1--8 (zip) pdf 21 28 15 3.3, 3.4 radius of curvature zip summary (pdf) pdf 21 28 16 3.3 osculating circle zip summary (pdf) interactive plot TI calculator steps (pdf) pdf 21 28 18 4.1 sketching z=f(x,y) zip solutions 9--12 (pdf) table for z=xy (xlsx) pdf 21 19 4.2 multivariate discontinuity zip tables (xlsx) pdf 25 39 20 4.2 multivariate continuity zip pdf 25 39 21 4.3 partial derivatives zip pdf 25 39 22 4.4 tangent plane approximations zip differentiable not differentiable solutions 13-18 (pdf) pdf 25 39 23 4.5 chain rule zip pdf 31 39 24 4.5 chain rule zip hand-out (pdf) pdf 31 39 25 4.6 directional derivatives zip pdf 31 39 26 4.6 gradients and tangents zip Q&A 9--16 (zip) solutions 19-22 (pdf, xlsx) pdf 31 39 27 4.7 optimization zip pdf 31 39 29 4.7 classifying critical points zip f(x,y) plot; f(x,y) critical points; paraboloids (pdf) pdf 36 50 30 4.8 Lagrange multipliers zip calculator notes pdf 36 50 31 5.1 double integrals over rectangles zip pdf 36 50 32 5.2 general double integrals zip pdf 36 50 33 5.2 general double integrals zip pdf 36 50 34 5.3 polar double integrals zip solutions 23-27 (pdf) pdf 42 50 35 5.4 triple integrals over boxes zip pdf 42 50 36 5.4 general triple integrals zip pdf 42 50 37 5.5 cylindrical triple integrals zip pdf 42 50 38 5.5 spherical triple integrals zip Q&A 19--27 (pdf) pdf 42 50 40 5.6 moments of inertia zip solutions 29-33 (pdf) pdf 47 41 5.7 coordinate transformations zip pdf 47 42 5.7 coordinate transformations zip pdf 47 43 6.1 vector fields zip CoCalc 3D vector field plots pdf 47 44 6.2 line integrals zip solutions 34--38 (pdf) pdf 47 45 6.2, 6.3 gradient fields zip pdf 53 46 6.3 topological obstructions zip Q&A 29--38 (zip) pdf 53 47 6.3 finding potential functions zip pdf 53 48 6.4 Green's Theorem zip pdf 53 49 6.4 Green's Theorem zip pdf 53 51 6.4, 6.5 circulation and flux zip pdf 58 52 6.5 curl and div zip pdf 58 53 6.6 parametric surface area zip pdf 58 54 6.6 flux surface integrals zip Möbius strip solutions 40--44 (pdf) solutions 45--49 (pdf) pdf 58 55 6.7 Stokes' Theorem zip pdf 58 56 6.7 Stokes' Theorem zip practice problem (pdf) 57 6.8 Gauss' Theorem zip practice problems (pdf) 58 6.8 Gauss' Theorem zip practice problem (pdf) solutions 51--55 (pdf) last Q&A (zip) Final Exam (12:30, May 15)
Plan ahead: the syllabus has the full semester schedule.