Graduate syllabus;
undergraduate syllabus
Office hours: MW 2--5, TR 2--3, S 2--4 at LBV 321
Email: david.milovich@tamiu.edu
Textbook: Topology by James R. Munkres; ISBN 9780134689517
Old exams.
Spring 2015 course materials
Day | Readings | Topics | Photos | Other | HW | HW due on Day | Revision due on Day |
1 | 1,2 | logic; sets; functions | zip | 5 | 12 | ||
2 | 3,5 | relations; products | zip | 7 | 13 | ||
3 | 7,9,10 | countability; choice; well orderings | zip | countability notes (pdf) | 8 | 15 | |
4 | 10,12,13 | SΩ; topologies; bases | zip | 9 | 16 | ||
5 | 14--16 | order, product, and subspace topologies | zip | alphabets (pdf) | 10 | 17 | |
6 | 17 | closed sets; convergence; Hausdorff spaces | zip | a closure proof (pdf) | 11 | 18 | |
7 | 18 | continuous functions | zip | 12 | 19 | ||
8 | 18,19 | homeomorphisms; infinite products | zip | 13 | 20 | ||
9 | 20,21 | the metric topology | zip | 15 | 22 | ||
10 | 21,22 | metrizability; quotient maps | zip | 16 | 23 | ||
11 | 22--24 | quotient topology; connectedness | zip | 17 | 24 | ||
12 | 23,24 | connectedness; compactness introduction | zip | compactness in terms of chains (pdf) | 18 | 24 | |
13 | 26--27 | compactness | zip | 19 | 24 | ||
14 | 26--27 | compactness | zip | 20 | 24 | ||
15 | 27--29 | compactness | zip | The UCT: a sequential approach (pdf) | 21 | 24 | |
16 | 30 | countability axioms | zip | Why RR is not Lindelof | 22 | ||
17 | 31, 32 | separation axioms | zip | Separation axiom preservation chart (pdf) | 23 | ||
18 | 31, 32 | separation axioms | zip | π-Base | 24 | ||
19 | 33 | Urysohn's Lemma | zip | 24 | |||
20 | 34 | Urysohn's metrization theorem; Cech embedding | zip | 24 | |||
21 | 11, 37, 38 | Stone-Cech compactification; Zorn's Lemma; Tychonoff Theorem | zip | Alexander Subbase Lemma (pdf) | 24 | ||
22 | 43--45.1 | complete metric spaces;
a space-filling curve | zip | Hilbert curve The UCT: a sequential approach (again) (pdf) | 24 | ||
23 | Q&A | ||||||
24 | Q&A | zip | |||||
Final Exam (6:00, May 9) |