Syllabus
Office hours: MW 2--5, TR 2--3 at LBV 321; email: david.milovich@tamiu.edu
Textbook
Old Exams
Fall 2017 course materials

Day Readings Topics Photos Other HW HW due
on Day
Tested
on Day
1 2.1 plane vectors zip pdf 7 17
2 2.2 space vectors zip pdf 7 17
3 2.3 dot product zip pdf 7 17
4 2.3 projections zip pdf 7 17
5 2.4 cross product zip about inverse sine (pdf) pdf 11 17
6 2.4 areas, volumes zip parallelepiped
(scroll down)
pdf 11 17
7 2.5 lines zip pdf 11 17
8 2.5 planes zip pdf 11 17
9 2.5 distances to lines, planes zip solutions 1--4 (pdf) pdf 15 28
10 2.7 cylindrical coordinates zip θ formulas (pdf) pdf 15 28
11 2.7 spherical coordinates zip Greek alphabet pdf 15 28
12 3.1, 3.2 space curves;
unit tangent vector
zip interactive plots
WolframAlpha plot
pdf 15 28
13 3.3 arc length zip solutions 5--8 (pdf)
TI calculator steps (pdf)
WolframAlpha arc length
pdf 21 28
14 3.3, 3.4 acceleration;
unit normal vector
zip Q&A 1--8 (zip) pdf 21 28
15 3.3, 3.4 radius of curvature zip summary (pdf) pdf 21 28
16 3.3 osculating circle zip summary (pdf)
interactive plot
TI calculator steps (pdf)
pdf 21 28
18 4.1 sketching z=f(x,y) zip solutions 9--12 (pdf)
table for z=xy (xlsx)
pdf 21
19 4.2 multivariate discontinuity zip tables (xlsx) pdf 25 39
20 4.2 multivariate continuity zip pdf 25 39
21 4.3 partial derivatives zip pdf 25 39
22 4.4 tangent plane
approximations
zip differentiable
not differentiable
solutions 13-18 (pdf)
pdf 25 39
23 4.5 chain rule zip pdf 31 39
24 4.5 chain rule zip hand-out (pdf) pdf 31 39
25 4.6 directional derivatives zip pdf 31 39
26 4.6 gradients and tangents zip Q&A 9--16 (zip)
solutions 19-22 (pdf, xlsx)
pdf 31 39
27 4.7 optimization zip pdf 31 39
29 4.7 classifying critical points zip f(x,y) plot;
f(x,y) critical points;
paraboloids (pdf)
pdf 36 50
30 4.8 Lagrange multipliers zip calculator notes pdf 36 50
31 5.1 double integrals
over rectangles
zip pdf 36 50
32 5.2 general double integrals zip pdf 36 50
33 5.2 general double integrals zip pdf 36 50
34 5.3 polar double integrals zip solutions 23-27 (pdf) pdf 42 50
35 5.4 triple integrals over boxes zip pdf 42 50
36 5.4 general triple integrals zip pdf 42 50
37 5.5 cylindrical triple integrals zip pdf 42 50
38 5.5 spherical triple integrals zip Q&A 19--27 (pdf) pdf 42 50
40 5.6 moments of inertia zip solutions 29-33 (pdf) pdf 47
41 5.7 coordinate transformations zip pdf 47
42 5.7 coordinate transformations zip pdf 47
43 6.1 vector fields zip CoCalc 3D vector field plots pdf 47
44 6.2 line integrals zip solutions 34--38 (pdf) pdf 47
45 6.2, 6.3 gradient fields zip pdf 53
46 6.3 topological obstructions zip Q&A 29--38 (zip) pdf 53
47 6.3 finding potential functions zip pdf 53
48 6.4 Green's Theorem zip pdf 53
49 6.4 Green's Theorem zip pdf 53
51 6.4, 6.5 circulation and flux zip pdf 58
52 6.5 curl and div zip pdf 58
53 6.6 parametric surface area zip pdf 58
54 6.6 flux surface integrals zip Möbius strip
solutions 40--44 (pdf)
solutions 45--49 (pdf)
pdf 58
55 6.7 Stokes' Theorem zip pdf 58
56 6.7 Stokes' Theorem zip practice problem (pdf)
57 6.8 Gauss' Theorem zip practice problems (pdf)
58 6.8 Gauss' Theorem zip practice problem (pdf)
solutions 51--55 (pdf)
last Q&A (zip)
Final Exam (12:30, May 15)
Plan ahead: the syllabus has the full semester schedule.