Syllabus (includes schedule).
Office hours: MW 1--3, TR 1--5 at LBV 321; email: david.milovich@tamiu.edu

Textbook corrections (for first printing).

Day Readings Topics Photos Audio Other HW
1 1.1-2 introduction; proof techniques zip mp3 1.2 #7,10,12
2 1.3-4 sup and inf; completeness zip mp3 1.3 #11; 1.4 #8
3 1.4-5 completeness; cardinality zip mp3 1.5 #3
4 2.1-2 sequences and series zip mp3 course outline,
pictoral (jpeg)
2.2 #2,7
5 2.3 limit theorems zip mp3 2.3 #10,13
6 2.4 Monotone Convergence Theorem zip mp3 2.4 #5
7 2.5 Bolzano-Weierstrass Theorem zip mp3
(incomplete)
2.5 #1,2
8 2.6 Cauchy sequences zip mp3 2.6 #3,4
9 2.7 infinite series properties zip mp3 more solutions (pdf) 2.7 #1,9
10 3.2-3 open, closed, compact sets zip mp3 more solutions (pdf) 3.2 #15; 3.3 #6
11 4.1-2 functional limits zip mp3 4.2 #5,9
12 4.3 continuity zip mp3 more solutions (pdf) 4.3 #1,11
13 4.4 continuity and compactness zip mp3 4.4 #7 solved two ways (pdf).
The "Subsubsequence Lemma" (pdf).
4.4 #3,6
14 4.5 Intermediate Value Theorem zip mp3 Days 1--7 one-page outline (jpeg).
more 4.5 solutions (zip)
4.5 #6
16 5.1-2 derivatives zip mp3 more 5.2 solutions (zip) 5.2 #9,10
17 5.3 Mean Value Theorems zip mp3 5.3 #5
19 6.1 power series introduction zip mp3 See 8.3 for an Euler's sum proof
20 6.2-3 uniform convergence zip mp3 6.2 #9, 6.3 #6
21 6.4-5 power series zip mp3 6.5 #2,8
24 6.6 Taylor series zip mp3 6.6 #7
25 7.2 integrals defined zip mp3
27 7.2-4 properties of integrals zip 7.3#1
28 7.2-4 Fundatmental Theorems of Calculus zip Dec. 5 Q & A (zip)
Final Exam (Dec. 11, 3:30-6:30)

Old exams:
Fall 2012: 1, 2, Final
Fall 2013: 1, 2, Final
Fall 2014: Final
Fall 2015: 1, 2, Final
Fall 2016: Midterm, Final